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THESIS SUMMARY 
Soil health and function is key to general ecosystem health and human society, yet 

soils are under ever-increasing pressure from anthropogenic activities. The complexity 

of the soil system, with physical, chemical and biological factors interacting, make it 

difficult to understand what underpins soil health. The technical capabilities within 

soil science are greater than ever before, generating vast amounts of data. Despite this, 

identifying the key properties and interactions that influence soil health at policy-

relevant scales remains an ongoing challenge. Evaluating current soil health and 

predicting future responses to global change therefore requires soil information at 

national levels as well as experimental analyses. The objectives of this thesis were (i) to 

evaluate the state of soils in Wales in regard to their physicochemical properties and 

biological communities, (ii) to establish the relative roles of physicochemical and 

biological factors in determining soil biodiversity, (iii) to explore the associations 

between soil physical properties and biological communities across Wales, and (iv) to 

evaluate the impact of climate change on soil microbial communities and function. 

This thesis combined soil physicochemical and microbial community characterisation 

through DNA sequencing results from a national scale field survey of the Welsh 

landscape and a long term climate change experiment in order to identify key 

dynamics and better predict responses to future change. Results from the national 

scale field survey indicated that soil pH and carbon drive many of the gradients in soil 

physicochemical and biological properties across Wales, with limited impact of land 

use. The Welsh soil landscape was largely split into two groupings: that of the near-

neutral soils underlying improved and neutral grasslands, and that of the acidic soils 

that underlie bogs, heathlands and acidic grasslands. Soil microbial diversity was 

positively driven by soil pH, with soil textural heterogeneity increasing bacterial 

diversity once the increase with pH and decrease with carbon was accounted for. Soil 

physical properties were both influencing biological communities and being 

influenced by them, as shown by soil surface water repellency being associated with 

plant and microbial community composition. Plant and soil microbial diversity were 

positively correlated but this was driven entirely by changes in soil pH. However, the 

composition of above and belowground communities showed associations even after 

accounting for environmental gradients. In the long term field experiment, soil 

bacterial and fungal communities responded to experimental drought and warming, 

yet at a Welsh landscape scale microbial communities were largely unresponsive to 

climatic variables. Plant communities were an important link between climate and 

land use drivers and soil biological and functional responses. The combination of soil 

physicochemical, microbial and aboveground information throughout this thesis 

provides new understanding of the complex interactions and feedbacks that underpin 

soil health and function. Consideration of these dynamics is key to evaluating and 

monitoring soil health and resilience to future change.  
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Increasing human population and per capita demand for resources is putting greater 

strain on ecosystems, both natural and anthropogenic (Millennium Ecosystem 

Assessment, 2005; Tilman et al., 2011; United Nations, 2015). This is unlikely to cease 

in the near future, and attempts need to be made to reconcile the demands upon the 

environment for resources and maintaining the health of the planet (Foley et al., 2011; 

Rockström et al., 2009). Determining what we believe to be a healthy ecosystem is 

difficult and controversial, as there are numerous potential definitions which, while 

superficially similar, can lead to completely different results or viewpoints (Vieweger & 

Döring, 2015). In order to sustainably manage ecosystems clear goals are needed 

alongside a deeper understanding of relationships between different ecosystem 

properties. Much of the work on quantifying ecosystem properties has focused upon 

the aboveground system (Costanza et al., 1997; Tilman et al., 2013). However, the 

importance of soils and the belowground ecosystem and interactions between above 

and the belowground are increasingly being recognised as important for biodiversity 

and ecosystem service delivery, whilst soil information is integrated increasingly into 

conservation practice (Banwart, 2011). 

Few people consider soils in their day-to-day lives, yet they are of undeniable 

importance to humanity. Degradation of soils limits functionality and has been 

important throughout history, with soil salinisation and erosion underpinning the 

breakup of many ancient civilisations (Evans et al., 2018; Hillel, 1992; Jacobsen & 

Adams, 1958). The impacts of soil degradation events on ecosystem properties and 

human society can be observed for hundreds of years, if not thousands, yet practices 

that degrade soil are still occurring today (Hall et al., 2013). This is particularly 

concerning due to the wide range of services soils provide to humanity (Robinson et 

al., 2014). Historically, most soil research has had an agricultural focus, yet soils are 

not just important to humans for growing crops. They perform many other functions 

and support the delivery of ecosystem services, especially for earth system regulation, 

including the storage of 1500-2400 Pg of carbon globally, around four times the 

amount stored in vegetation (Stocker et al., 2013). Soils act as essential regulators of 

nutrient cycling, the water cycle and act as a reservoir of many valuable resources 
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(Blum, 2005). The ability of any given soil to perform these essential functions is often 

defined as soil quality, or soil health (Bünemann et al., 2018; Kibblewhite et al., 2008).  

Determining how to define soil quality, or health, is part of a wider discussion around 

the best way to present the status of global ecosystems in all of their complexity. The 

ecosystem services concept attempted to reframe the discussion around ecosystem 

conservation through determining the benefits, or services, provided to humanity by 

various ecosystem components (Daily, 1997). These ecosystem components are termed 

natural capital, an example of this framework as applied to soils is presented by 

Dominati et al. (2010). This approach has proved popular and underpinned various 

assessments of ecosystem quality (Millennium Ecosystem Assessment, 2005; UK 

National Ecosystem Assessment, 2011), as well as more controversial attempts to 

assign monetary value to global ecosystem services (e.g. Costanza et al., 1997). The use 

of this approach within the Millennium Ecosystem Assessment found that 60% of the 

ecosystem services they examined are being degraded or used unsustainably, with 

future declines and non-linear changes in ecosystem quality expected. However, the 

ecosystem service approach has also had detractors, with the term proving vague to 

apply in practice (Danley & Widmark, 2016; Potschin & Haines-Young, 2016), and 

many objecting to the presentation of ecosystems solely in terms of their extrinsic 

value to humanity (e.g. Peterson et al., 2010; Puig de la Bellacasa, 2015). All of the 

frameworks used for presenting ecosystem, and soil, quality require an understanding 

of how the measurable properties within ecosystems relate to emergent behaviour 

such as resilience to stress and support of key services. Establishing these linkages 

between different ecosystem properties remains an ongoing challenge in evaluating all 

of the different frameworks of ecosystem quality. 

Identifying key soil quality indicators is a challenge and has rarely been done in 

relation to specific threats, functions or ecosystem services in order to evaluate soil 

quality (Bünemann et al., 2018). In fact, we still have relatively poor understanding of 

how specific soil properties link to soil functions at a spatial and temporal scale of 

interest to humanity (Kibblewhite et al., 2016). Soil biodiversity has been suggested as 

a potential indicator of soil quality and health (Maron et al., 2018; Ritz et al., 2009). 

Biodiversity within soils is high; soil organisms are estimated to represent 25% of all 
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described species and the lower effort put into describing soil organisms potentially 

means that this is an underestimate (Decaëns, 2010). Biodiversity is of interest as it 

has been found to relate to the resilience of ecosystems, proposed to be the criterion 

for ecosystem health (Döring et al., 2015; Tilman et al., 2013). Also, soil biodiversity 

may represent a hitherto little explored resource for medicines and other substances, 

with promising new antibiotics being recently discovered (Ling et al., 2015). However, 

soil biodiversity comprises many different domains and trophic levels with each one 

being relevant to different functions, if any, and all being challenging to measure. 

Some researchers have used multitrophic diversity to address this issue (Soliveres et 

al., 2016), but these results are often highly dependent upon the organisms included 

within the analysis as well as potentially obscuring finer-scale detail. 

In this era of ever increasing pressure on natural ecosystems and soil it is essential to 

monitor ecosystem change over time. Soil is an integral part of natural ecosystems, 

and is required for biomass production whilst also representing a valuable store of 

carbon and other resources. The need to produce food for the industrial revolution 

meant that early work on soils focused on inventory and suitability for crop growth, 

which evolved into soil surveys in many countries in the 20th Century. If ecosystems 

are to be managed for long-term sustainability then an understanding of the long-

term response of soil to environmental change is essential (Tugel et al., 2005). This 

requires a shift in the way we observe soils, moving away from inventory towards a 

monitoring of change and undertaking experiments to understand soil response to 

potential change.  

1.1 Interplay between soil structure and biology 

Soil structure is a dynamic soil property, influenced by physical, biological and 

anthropogenic processes. While it is well understood that processes such as tillage 

have a strong and lasting impact on soil structure, causing compaction and increasing 

soil erosion, the impact of certain biological processes on soil structure are still being 

discovered. We are beginning to establish what kind of feedback processes exist 

between the soil structure and biological activity. For example, the feedbacks 

determining soil carbon content are of great interest due to the role of soil carbon in 
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determining the water storage capability, the predominance of anoxic metabolic 

processes and thus greenhouse gas emissions and global biogeochemical cycles. There 

have been recent results suggesting that the physical location of the carbon within the 

soil is important in controlling its degradation, with more carbon being decomposed 

within pores of 30-100 µm diameter which constitute an optimal habitat for microbial 

activity (Kravchenko et al., 2019; Quigley et al., 2018). The migration of carbon 

between the different pore sizes of soil will strongly influence the eventual fate of said 

carbon, showing the interplay of soil structure and biology in determining carbon 

storage. The difficulties involved in determining which processes are relevant and 

dominate in the field are immense, but through a careful combination of experiments, 

observations and modelling these questions can be answered.  

1.1.1 Influence of soil structure on microbes 

The structure of a soil influences the biological communities that can proliferate and 

function within it. Soil is highly heterogeneous and consists of multiple micro-

habitats, which can provide different physicochemical environments and support a 

variety of different organisms (Vos et al., 2013). The heterogeneity in microhabitats 

can influence a variety of different taxa, ranging from plants and macrofauna through 

mesofauna and microbial communities (Burton & Eggleton, 2016; Hu et al., 2014; 

Stromberger et al., 2012; Vos et al., 2013). Different microbes prefer different chemical 

and physical environments, ranging from preferences in oxic vs anoxic conditions to 

preferences for certain minerals (Nishiyama et al., 2012) and particle size fractions 

(Hemkemeyer et al., 2018; Poll et al., 2003). The soil structure and microhabitats 

available can strongly influence microbial community assembly and response to 

external inputs (Neumann et al., 2013).  

The heterogeneity of the soil environment can inform the physical niche space 

available to the microbial community and the connectivity of different microbial 

communities, with implications for community assembly. The texture of a soil 

influences the structures that can develop there, with implications for pore space and 

soil hydraulic properties (van Genuchten, 1980). This then influences the microbial 

communities found within a soil, as found in experimental results. One study found 

that manipulation of the particle size distribution within soil mesocosms had a greater 
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impact on microbial community structure than pH alteration (Sleutel et al., 2012), 

while another found that low pore connectivity increased bacterial diversity in soil 

(Carson et al., 2010). Alteration of the physical environment will also change the 

chemical environment of the soil, and these have to be considered in tandem within 

semi-natural ecosystems. 

The chemical environment of the soil is known to be important in determining the 

biological communities that can exist there. At the national and global scale, pH is the 

strongest driver of soil microbial diversity and composition (Bickel et al., 2019; 

Delgado-Baquerizo et al., 2018; Griffiths et al., 2011; Hendershot et al., 2017; Lauber et 

al., 2009). Climatic influences also express themselves as apparent drivers of the soil 

microbial community at large spatial scales, but these may be mediated by changes 

within the soil physicochemical properties (Bickel et al., 2019; Delgado-Baquerizo et 

al., 2018; Tedersoo et al., 2014). At finer spatial scales the influence of the variety of 

soil nutrients, habitat variation and plant community dynamics become greater (Cao 

et al., 2016; Constancias et al., 2015; Ranjard et al., 2013). However, clearly the biotic 

communities within soils possess the ability to modify their physicochemical 

environment which makes it difficult to predict the impact of future change in the 

environment upon soil ecology. 

1.1.2 Influence of biology on soil structure 

Soil organisms can influence their environment through the exudation of substances, 

binding together of particles, preferential breakdown of soil material, or even simply 

by moving through the soil. Many soil organisms can produce highly water repellent 

organic matter, which influences the wetting behaviour of the soil and aggregate 

formation and stability. Fungi have been known for many years to produce 

hydrophobic surfaces on their hyphae, hypothesised to reduce water loss and increase 

drought tolerance (Duddridge et al., 1980; Read et al., 1985; Unestam, 1991). Recently 

however, biofilm production by bacteria has also been found to lead to the creation of 

extremely water repellent surfaces (Epstein et al., 2011). Mucilage produced by plants 

and microbial biofilms has been shown to strongly influence rhizosphere rewetting 

behaviour (Benard et al., 2018). These exudates can influence both water movement 

through the soil and the creation of soil aggregates. 
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Soil structure has been described using a recursive model, where particles make up 

microaggregates which are then themselves bound together into macroaggregates. 

This perspective on soil, where the patterns of soil structure remain similar across 

spatial scale have prompted some to describe soil as a fractal system (Grout et al., 

1998; Millán et al., 2003; Tyler & Wheatcraft, 1992). There has been much research on 

the relationships between soil aggregation and microbial communities (Gupta & 

Germida, 2015). It is clear that microbial communities are both influenced by the 

presence and structure of soil aggregates and promote their formation (Tecon & Or, 

2017; Totsche et al., 2018; Totsche et al., 2010). Plant and fungal communities have 

been shown to promote soil aggregation both together and independently of each 

other (Hu et al., 1995; Miller & Jastrow, 1990).   

Almost no soils exist with only the microbial part of the food web, and the role of 

plants and soil macrofauna in determining soil structure and microbial community 

response cannot be ignored. Plants and macrofauna can change both the soil chemical 

environment and physical environment through exudation/excretion and bioturbation 

of the soil. This has implications for the microbial communities that live in the soil, as 

they may form close interactions with plant roots, be transported by macrofauna 

through the soil and feed off the deposits from the larger flora and fauna (Read & 

Perez-Moreno, 2003; Yang & van Elsas, 2018). Interestingly, there are suggestions that 

the influence of the differing ecological niches within soil may be greater upon bulk 

soil fungal communities than rhizosphere communities, indicating the importance of 

the fine scale variation in soil to not only niche creation but the factors driving 

community assembly and function (Beck et al., 2015). Understanding how the 

different trophic levels interact to influence soil structure is key to evaluating how 

future change will impact soil function. 

1.1.3 Relevance to future change and stress resilience 

The ability to bio-engineer their environment may determine the resilience of 

organisms to stress. Within both semi-arid and peatland ecosystems the presence of 

rhizosphere or soil surface hydrophobicity induced by plants can increase tolerance of 

either drought or fire events (Kettridge et al., 2014, 2017; Robinson et al., 2010; 

Verboom & Pate, 2006). These processes may not be aimed at directly bio-engineering 
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the soil environment, as they may occur at the organism scale due to the increased 

above-ground stress tolerance or competitive ability conferred by the ability to alter 

the immediate environment. For instance, in plants the ability to alter rhizosphere 

hydrophobicity has been shown to confer a competitive advantage due to increased 

acquisition of water (Kroener et al., 2016; Zeppenfeld et al., 2017). In general, the 

production of extracellular polymeric substances can improve the resilience of 

organisms to diverse sources of stress (Costa et al., 2018). As environmental sources of 

stress increase, these abilities could become increasingly important for survival within 

ecological communities. Resilience has been proposed as a universal criterion of 

health, therefore the ability of soil organisms to influence their physical environment 

under this paradigm could be a key determinant of soil health (Döring et al., 2015).  

1.2 Making predictions and mitigating issues 

The overall goal of soil science is usually to offer solutions to the current challenges 

facing soils across the globe today, and to predict how future changes will impact soils 

and their functions. These objectives require an understanding of the mechanisms 

that underlie soils, and the ability to make causal inferences about how soils work. The 

aforementioned feedbacks between soil physicochemical properties and the biotic 

communities that exist in soils pose an issue to establishing the causal mechanisms of 

relevance to soil management. To address this, we need a combination of 

experimental, survey and monitoring work to establish which mechanisms plausibly 

exist and which are relevant at the field and national scale. 

1.2.1 Experiments vs field surveys 

Soil experiments are useful in that we can manipulate pressures and then analyse the 

change in response to a certain treatment; while monitoring examines the state and 

change (Lawrence et al., 2013; Richter et al., 2007). The two approaches provide a 

powerful combination for understanding drivers of soil change. Long-term monitoring 

programmes and soil experiments are increasing in number and many useful insights 

have been gained into long-term behaviour of soil (Richter et al., 2007; Tóth et al., 

2013). These range from examining long term impacts of fertiliser application on soil 

fertility to the impacts of climate change on soil biogeochemical cycling (Edmeades, 
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2003; Lapenis et al., 2008; Ren et al., 2018). Experiments provide opportunities to 

explore what exact response will result from a specific intervention, enabling more 

stringent exploration of mechanisms at the expense of generality across landscapes 

and spatial and temporal scales. 

The real-world response of soil at a national level to global change can be better 

understood through long-term monitoring programmes. The Countryside Survey in 

Great Britain was pioneering in this context and has provided evidence of soil change 

since 1978 (Emmett et al., 2010; Reynolds et al., 2013). Unlike systematic surveys used 

for inventory, the Countryside Survey is statistically robust, allowing reporting of 

uncertainty. The robust design has led to the adoption of similar designs at the EU 

level, for example the Land Use/Land Cover Area Frame Survey (LUCAS) topsoil 

database covers 25 member states of the European Union and provides a basis for soil-

related policies (Orgiazzi et al., 2018; Tóth et al., 2013). However, there is increasing 

demand from policy-makers for the ability to link these large-scale monitoring 

approaches to agri-environment policy outcomes in order to evaluate current policy. 

This requires a combination of monitoring, experimental and modelling approaches, 

and the implications of this for inferring the potential impacts of interventions need to 

be considered within the framework of causal inference in order to evaluate its 

potential strengths and shortcomings. 

1.2.2 Causal inference 

Established practice when dealing with observational data has been to discuss the 

results in terms of associations and correlations, but to avoid as much as possible 

referring to causal linkages. Unfortunately, the careful selection of language will not 

prevent readers from inferring results in a causal sense, and many observational 

results fill gaps in the literature due to the impossibility and/or impracticality of doing 

an equivalent experiment. Therefore there has recently been work on the use of 

approaches such as directed acyclic graphs (DAGs) to inform causal interpretation of 

observational research (Pearl & MacKenzie, 2018; Rohrer, 2018). A DAG consists of a 

graphical model, where there are nodes (representing variables) connected by 

unidirectional arrows (representing causal links), see example in Figure 1.1. They are 

acyclic in that there are no feedback loops within the model. These approaches are 
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designed to enable careful consideration of confounding variables through the 

building of graphical causal models. 

Careful consideration of the causal hypotheses underlying our data, potentially 

through creating a DAG, informs us which variables need to be controlled within our 

analysis in order to determine the direct influence of one variable upon another. 

Often, to identify the direct effect of one variable upon another scientists statistically 

control for as many other variables as possible. However, this practice will not 

improve estimates of direct effects, actually distorting the actual effect (Spector & 

Brannick, 2011). These approaches can be made worse by not including information on 

measurement error into the model, even at large sample sizes and moderate error 

rates (Westfall & Yarkoni, 2016).  

 

Figure 1.1: A DAG showing the hypothesised relationships between soil carbon, water and pH. The arrows 

indicate that carbon acts as a causal influence on water and pH, while water causally influences pH.  

If we wish to estimate the impact of one variable on another when they both share a 

common cause then we need to account for the common cause, or confounder. Take 

the DAG shown in Figure 1.1. If we are to estimate the impact of water upon pH then 

we need to control for the impact of carbon on pH. This is easily done by including 

carbon as well as water as predictors of pH within the regression model. This step is 

necessary if we wish to evaluate the potential impact of changing the water content of 

the soil on pH. The use of observational data to infer the outcomes of interventions 

requires the control of confounders.  

What if we were to condition upon a variable that is not a common cause, but instead 

influenced by both the other variables? Variables within DAGs that have arrows 

pointing at them only in a path are referred to as colliders. For example, in the above 
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figure pH is a collider between carbon and water. If we wished to discover the impact 

of carbon on water content we simply need to run a model with carbon as the sole 

predictor. If we were to condition on pH by adding it to the model we would lose the 

effect of carbon on water. Figure 1.2 shows a simulated dataset where water is a 

function of carbon, and pH a function of water and carbon together. Modelling water 

as a function of carbon leads to a coefficient on carbon of 0.85 (±0.1 S.E.) – close to the 

true coefficient of 1. If we were to condition on pH, we would estimate the impact of 

carbon as -0.02 (±0.13 S.E.), while pH would be estimated to have a significant impact 

of 6.30 (±0.71 S.E.). However, we know that this is not the true model. Widely used 

approaches such as information criteria would not be able to pick the true causal 

model, in fact in this case the best model by AICc is the one which includes pH 

(ΔAICc = 65).  

  

Figure 1.2: The relationship between carbon and water, with points colour coded by pH. This data was 

simulated based on the DAG in Figure 1.1. 

This collider effect can occur without explicitly conditioning on a collider within a 

model. For example, say you are interested in the relationship between bird 

abundance and flowers and you are studying arable systems. It is plausible that within 

the area you are studying that only areas with lower bird and flower abundance are 
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used for crop production due to nature conservation constraints. Across the entire 

landscape there may be no relation between bird and flower abundance, yet within 

arable sites there will be a negative relationship between birds and flowers. Here the 

arable variable is the collider, and the fact that the study is limited only to arable sites 

is equivalent to conditioning on this collider. Figure 1.3 shows this for a simulated data 

set. For the whole landscape there is no link from flowers to birds (-0.01 ±0.03), while 

in arable sites there is a negative relationship (-0.22 ±0.05).  

 

Figure 1.3: The relationship between flower and bird diversity in a simulated dataset. If the combined diversity 

is above 50 then the site is categorised as not arable. Note the decreasing bird diversity with increasing 

flower diversity in arable sites, while overall there is no pattern. 

It is tempting to consider experimental results to give definitive answers as to the 

causal effects of a certain treatment. However, interpretation of experimental results 

can easily fall into certain traps which can lead to erroneous conclusions. For example, 

in many experiments it is common to control for post treatment variables, however, 

this can lead to violation of the assumption of random assignment of treatments 

which can profoundly bias the results (Montgomery et al., 2018). This is equivalent to 

conditioning on a collider, as discussed above. Careful consideration of the proposed 
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mechanisms underlying the behaviour of soils is needed for both observational and 

experimental results. 

1.2.3 Information theory 

With the use of new technologies in soil science has come an increasing amount of 

information with a relative decrease in the amount known or hypothesised about this 

information. Examples of this include the increasing use of laser granulometry in 

particle size distribution causing a switch from a 3-category system (sand, silt, clay) to 

over a hundred particle size bins (Bieganowski et al., 2018). On a larger scale within 

soil microbial studies the advent of next generation sequencing has led to the genetic 

characterisation of thousands of microbes within a single soil sample, many of which 

were previously unknown, unculturable, or with limited taxonomic and functional 

metadata (Knight et al., 2018). This proliferation of data has required more tools and 

metrics to characterise the soil system. To do so in a way that is both accurate and 

useful is a work in progress, as we attempt to take that which is incomprehensible in 

its complexity and boil it down to a set of simple results and rules. 

1.2.3.1 Information diversity 

Quantifying the information content of a selection of objects is an issue that was 

addressed by Shannon with respect to communication systems through the creation of 

his entropy index (Shannon, 1948). This 𝐻 index has proven to be a key measure of 

information, choice, and uncertainty, and is given by adding together the probabilities 

of each event (𝑝𝑖) multiplied by the logarithm of the probabilities. 

 
𝐻 = −∑𝑝𝑖log(𝑝𝑖)

𝑛

𝑖=1

 Equation 1.1 

Within ecological research this is used as a metric of biodiversity where the 

probabilities are represented by the proportions of the different species. Other 

biodiversity metrics also fall into a similar information theory framework. Hill laid out 

this framework that involved measuring biodiversity taking into account both species 

richness and relative abundances (Hill, 1973). If 𝑝𝑖 is taken to be the proportion of the 

total sample represented by the species then a useful metric is the average of 𝑝𝑖 across 
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the sample. This can then be weighted, i.e. the impact of rare species versus common 

species changes by varying the exponent, 𝑞. 

 

𝑝̅𝑖 = (∑𝑝𝑖
𝑞

𝑛

𝑖=1

)

1/(𝑞−1)

 Equation 1.2 

In equation 1 𝑛 is the total number of species. True alpha diversity ( 𝐷𝛼
𝑞 ) can be 

defined as the inverse of 𝑝̅𝑖 and can be understood as the effective number of species 

in a sample (Hill, 1973; Tuomisto, 2010). In the case that q = 0 then the true diversity 

will be the same as species richness. As 𝑞 increases it can be thought of as examining 

the sample in less detail, so that only the most common species are recorded and the 

effective number of species declines (Hill, 1973). The Simpson’s index occurs at 𝑞 = 2 

and calculates the mean proportional abundance of the sample, which can then be 

transformed into an effective number of species by inversion (Simpson, 1949). At 𝑞 =

1 Equation 1.2 will not work due to division by 0, however it can be shown that as q 

tends to 1 this become the Shannon information entropy in Equation 1.1. The effective 

number of species in the sample when 𝑞 = 1 is therefore: 

 𝐷1

= exp(⁡−∑𝑝𝑖ln⁡(𝑝𝑖)

𝑛

𝑖=1

) 
Equation 1.3 

Within this framework it can be seen that the Shannon-Weaver index of biodiversity 

places more emphasis on rare species than the Simpson index. This is because the 𝑞  

value is lower (1 < 2), and as discussed above this means the sample is effectively being 

examined in more detail. Although many studies report the weighted mean 

proportional abundance (e.g. the Shannon-Weaver index) the effective number of 

species (e.g. the exponential of the Shannon-Weaver index) is often intuitively easier 

to understand. The effective number of species also holds useful mathematical 

properties, such as always being positively correlated with the number of actual 

species (Hill, 1973; Jost, 2007; Tuomisto, 2010). Alternatively, there are diversity 

metrics based upon theories on species abundance distributions (Fisher et al., 1943; 

Hill, 1973; Magurran, 2004), however careful attention must be paid to the underlying 

assumptions of these models. Box 1.1 represents a few examples of different metrics of 
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biodiversity, and how they vary as the relative abundance of the different species 

change.  

 

In many cases when dealing with information the scale at which the data is examined 

will influence the amount of information that is gathered. Within chaos and fractal 

theory the aforementioned information functions are extended into the Rényi 

dimensions, modifying by the division of the information function by the logarithm of 

the scale (Peitgen et al., 1992). First, the information function for a given scale (𝑠) and 

exponent (𝑞): 

Box 1.1 A comparison of diversity indices:  

 

Diversity indices for three theoretical sites are shown. Each individual is 

represented by a square that is colour coded according to species. Despite having 

the same species number each site has very different patterns of species abundance. 

This can be summarised using the true diversity at q=1, the inverse of the Shannon-

Weaver index, and the true diversity at q=2, the inverse of the Simpson index. This 

is shown in the table below.  

Site Species 

Number 

                       q=1                        q=2 

Index True diversity Index True diversity 

A 10 2.3 10 0.1 10 

B 10 0.5 1.6 0.8 1.3 

C 10 1.7 5.5 0.2 4.2 
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𝐼𝑞(𝑠) =
1

𝑞 − 1
log2 ∑𝑝𝑖

𝑞

𝑁(𝑠)

𝑖=1

 Equation 1.4 

The Rényi dimension 𝐷𝑞 for the parameter 𝑞 is given by: 

 
𝐷𝑞 = lim

𝑠→0

𝐼𝑞(𝑠)

log2 1/𝑠
 Equation 1.5 

At 𝑞 = 1 Equation 1.4 is not directly applicable, so we use the limit of 𝐼𝑞(𝑠) as 𝑞 → 1: 

 

lim
𝑞→1

𝐼𝑞(𝑠) = −∑ 𝑝𝑖log(𝑝𝑖)

𝑁(𝑠)

𝑖=1

 Equation 1.6 

Observe that the information function here is the same as the Shannon entropy as 

described before, demonstrating that the Rényi information dimension 𝐷1 represents 

what the information entropy would be at the finest scale of scrutiny. Other special 

dimensions within the Rényi dimensions are the box-counting dimension (𝐷0) and the 

correlation dimension (𝐷2). The development of these within fractal theory allows 

description of how much information we expect the system would hold at the finest 

scale. These dimensions are often applied to characterise the soil structure through 

analysis of the particle size distribution or pore distribution (Caniego et al., 2003; 

Grout et al., 1998; Tyler & Wheatcraft, 1992). 

 

1.2.3.2 Composition 

In many cases we are not just interested in the presence or absence of units, such as 

species, but in their identity and the relative composition of different sites. Some types 

of information can be encoded into information indices, such as phylogenetic and 

functional information which has been included in some versions of biodiversity 

metrics (Chao et al., 2010; Rao, 1982; Scheiner, 2012). These indices have been 

suggested to be more closely linked to functional diversity than species diversity itself 

(Milcu et al., 2013). They may also be used to help ameliorate the difficulties in 

applying the species concept to microbes, and indeed to any genetic data without a lot 

of information about the inter vs intraspecific variation of that gene within the 

taxonomic group (Kress et al., 2005; Nilsson et al., 2008; Schoch et al., 2012). If we are 
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interested in the impact of biodiversity on ecosystem function it would seem logical to 

measure functional or phylogenetic diversity rather than taxonomic diversity.  

The above indices of biodiversity are all concerned with alpha diversity; that is the 

diversity within a certain area. What may also be of interest is the beta diversity; or 

how dissimilar two separate ecosystems are. The term beta diversity has been used in 

many different ways to describe different phenomena (Tuomisto, 2010). “True beta 

diversity” has been defined as the factor needed to multiply “true alpha diversity” by to 

get the global (gamma) diversity. Here, true alpha diversity corresponds to the average 

number of species within the sampling units (Tuomisto, 2010). However, what is more 

often referred to by beta diversity is the degree to which two communities are 

dissimilar, which can also be referred to as community overlap or dissimilarity.  

Similar to the case for alpha diversity there are community overlap indices that take 

into account only presence/absence data (qualitative) but also those which use 

abundance data (quantitative) (Magurran, 2004). One of the most commonly used 

qualitative indices is the Sørensen index, which is widely regarded as one of the most 

effective presence/absence similarity measures particularly for molecular data where 

abundances are less clear (Magurran, 2004). If abundance data is available one of the 

many quantitative community overlap indices can be used, such as the Bray-Curtis 

index or the Morisita-Horn index (Wolda, 1981, 1983). There are numerous community 

overlap indices, of which only the most commonly used are described here, and 

compared in Box 2. The selection of the best index will depend upon the question of 

interest, the dataset and the eventual goal of the analysis (Magurran, 2004). Clearly, 

how to extract the useful information from biodiversity and other data is still a matter 

of much debate and controversy.  
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Box 1.2: A Comparison of Beta Diversity Indices: 

 

Four sites are shown, each with 25 individuals represented by squares. The colour 

of the square indicates the species, and the distance along the bar represents the 

total proportion of the community that is made up of each species. Community 

overlap values are given on the arrows connecting the sites, first (in red) is the 

Sørensen index, second (in blue) is the Marczewski-Steinhaus distance, third (in 

green) is the Bray-Curtis index and finally in pink is the Morisita-Horn index. The 

abundance based measures (BC and MH) pick out the site in the top right as being 

particularly different from the others, whereas the qualitative measures do not. 

True beta diversity of these sites is 1.50 at q=0, 1.16 at q=1 and 1.09 at q=2. 
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1.3 Soils in Wales 

Wales is varied in terrain and geological history, resulting in a wide variety of habitats 

and soil types over a relatively small geographic area. Wales also contains a relatively 

high proportion of high-carbon peatland soils, with 5.6% of the land area covered by 

peatlands (Vanguelova et al., 2012). Many of these valuable habitats are being 

degraded by agricultural use and forest plantations. In 2018 around 90% of Welsh 

land was used for some type of agriculture, with the majority being used for pasture 

and only 13% being used for arable production (Welsh Government, 2019a). Since 

2008 there has been an expansion of the total area of Wales used for agriculture (78% 

to 90%), although this is at least partly attributable to new registration of pre-existing 

farmland for access to new government funding, and also the proportion that is used 

for arable production (10% to 13%) (Welsh Government, 2019a). Land use across 

Wales is expected to change further in the future as political uncertainty and the 

impacts of climate change influence the relative sustainability of farming systems, 

with associated impacts on the Welsh environment. 

The climate of Wales is predicted to move towards having warmer, wetter winters 

with hotter, drier summers (Figure 1.4, Murphy et al., 2018). There are already more 

frequent and intense extreme events which are projected to increase further in the 

future, with increasing frequency of drought and flooding across the UK including 

Wales (Kendon, E. J. et al., 2014; Kendon, M. et al., 2019). This will have major impacts 

on the types of agricultural and natural landscapes that can persist in Wales (ASC, 

2016). The differing abilities of species to adapt and move in response to the new 

climate conditions, in tandem with other anthropogenic pressures, will lead to 

changes in the composition and stability of ecosystems (Morecroft & Speakman, 2015). 

Coastal landscapes will also change, as increasing sea level and potentially increased 

storm surge lead to increased flooding of coastal ecosystems (Palmer et al., 2018). All 

of these predictions assume that the models based on current atmospheric and 

oceanic dynamics are accurate to future dynamics, but there is potential for abrupt 

climate change with shutdown of major ocean-atmosphere systems which would have 

dramatic and difficult to predict impacts on the Welsh landscape (Rahmstorf et al., 
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2015). This ever increasing threat to Welsh ecosystems is occurring at a time of 

increased land use pressure, pollution, and political uncertainty. 

 

Figure 1.4: Projected future change in summer (top) and winter (bottom) temperature (left) and precipitation 

(right) for Wales under RCP8.5, the high emissions scenario, for 2040-2059 compared to 1981-2000. 

Note the increasing temperature for both summer and winter, and the drier summers and wetter 

winters. Source: UKCP18 website, Met Office © Crown Copyright. 

Within the UK, agricultural and environmental policy is devolved to the Welsh and 

Scottish Governments, with England and Northern Ireland both having their 

agricultural and environmental policies determined by the UK Government. These 

separate administrations have different policies and priorities, with overall 

requirements under the EU Common Agricultural Policy. Uniquely within the UK 

Welsh Government has recognised the importance of soil by adding soil carbon to 

their national indicators of well-being alongside social and economic indicators 

(Wellbeing of Future Generations Act (Wales) 2015). As the political landscape 

changes within the UK due to Brexit the agri-environment schemes within Wales and 

the other countries of the UK will change. Scoping of the post-Brexit agricultural 

policy options is being undertaken by Welsh Government with open consultations 

(Welsh Government, 2019b). Based upon the Welsh Government’s commitment to 

sustainability within the Wellbeing of Future Generations Act the new agri-

environment scheme will be based around the principles of sustainability and 
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sustainable land management. The details of this scheme are still far from decided but 

it is clear the transition from current agri-environment schemes to the new scheme 

will take many years. 

In order to improve the Welsh environment and the countryside Welsh Government 

launched the Glastir agri-environment scheme in 2012 (Rose, 2011). Glastir replaced 

four existing agri-environment schemes in Wales - Tir Cynnal, Tir Gofal, Tir Mynydd, 

and the Organic Farming Scheme – as well as the Better Woodland for Wales scheme. 

Initially, the scheme was composed of five components: the All Wales element, 

Targeted element, Common Land element, ACRES (the Agricultural Carbon 

Reduction and Efficiency Scheme), and the stand-alone Woodland Creation scheme. 

The All Wales element was open to all farmers across Wales and involved farmers 

choosing from a range of options that promote environmental health. The Targeted 

element was spatially targeted to certain areas of Wales that were identified as being 

of concern relating to factors such as soil carbon, water quality, biodiversity, historic 

environment and land access. The Common Land element was available to farmers 

who hold rights to common land and where the Commoners’ Association agreed to all 

graziers removing their stock during a winter closed period and managing sward 

height throughout the year. The ACRES and Woodland Creation scheme was open to 

farmers who invested in energy efficiency saving equipment and planting woodland 

respectively. To evaluate the impact of Glastir the Glastir Monitoring and Evaluation 

Programme (GMEP) was initiated (Emmett et al., 2014). GMEP combined monitoring 

of the Welsh countryside over a four-year field survey with modelling approaches in 

order to quantify the condition of the Welsh environment and the impacts of Glastir 

(Emmett et al., 2017).  

The GMEP field survey followed a similar design to the Countryside Survey, with 300 1 

km squares surveyed once each across the four years with a variety of measurements 

including plant surveys, freshwater measurements, pollinator transects, identification 

of historical features, habitat mapping, and soil sampling. Unlike the Countryside 

Survey, the square selection in GMEP was done under two separate criteria: (1) the 

Wider Wales Component which surveyed land classes across Wales in proportion to 
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their extent; and (2) the Targeted Component which preferentially included areas of 

Wales that were of special interest to Welsh agri-environment policy.  

Evaluating the impact of Glastir requires consideration of the factors influencing 

scheme uptake and implementation. Glastir does not constitute a randomised 

controlled trial, therefore as discussed above in section 1.2.2 in order to evaluate the 

impact of Glastir interventions factors that causally influence both the uptake of 

Glastir and the environmental property of interest need to be considered and 

accounted for. Factors that are known to influence uptake of agri-environment 

schemes include: previous experience of agri-environment schemes (Franzén et al., 

2016); the ease of integration of the scheme with the farmer’s planned farm 

development and current resources (Ingram et al., 2013; Karali et al., 2014); the mental 

health of the farmer (Hounsome et al., 2006); the belief framework held by the farmer 

(Johansson et al., 2013); and consistently the financial implications of the scheme 

(Franzén et al., 2016; Karali et al., 2014; Van Rensburg et al., 2009). Agri-environment 

schemes also often have different options and which the farmers choose to engage in 

could impact interpretation. Within the Glastir scheme a small number of 

environmental interventions were disproportionately selected by farmers and access 

to some types of payments was dependent upon previous engagement with agri-

environment schemes (Arnott et al., 2019). Many of these above factors can be 

assumed to have no impact upon the environmental property of interest, however 

others such as previous experience of agri-environment schemes may need to be 

accounted for.  

The structure of Glastir, with a targeted component involving certain areas being 

included due to their environmental characteristics, makes it more likely that there 

will be potential confounders upon the intervention – response relationship. Future 

repetition of the field survey within the Environment & Rural Affairs Monitoring and 

Modelling Programme (ERAMMP) aims to allow more confident attribution of the 

impacts of Glastir by examining trends over time. While it may be difficult to judge 

the impact of Glastir based upon GMEP, the field survey offers opportunities to 

evaluate the current state of the Welsh landscape. The combination of co-located soil 

physicochemical, soil microbial, plant community and animal community data across 
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the variety of Welsh land use offers powerful opportunities to examine ecological 

processes.   

1.4 Thesis aims and Objectives 

This section details the aims and objectives of this thesis, followed by a brief 

description of the relevant chapters and experimental work referring to each objective. 

A list of the experimental chapter titles is presented in section 1.5. Individual 

hypotheses and objectives are described in the each of the prepared manuscripts. 

1.4.1 Thesis aims 

The overall aims of this thesis are to explore the linkages between soil structure and 

microbial communities across a range of Welsh soils.  

1.4.2 Objective 1 

To evaluate the state of soils in Wales in regard to their physicochemical properties 

and biological communities.  

In Chapter 2 the results from the soil physicochemical properties from GMEP are 

presented with focus on the range of soil carbon, pH and nitrogen across Welsh 

habitats. The soil textural characteristics across GMEP are presented initially in 

Chapter 2, with extension in Chapter 3 with the application of the multifractal concept 

for soil textural heterogeneity characterisation. Chapter 4 presents the range of soil 

water repellency. The soil microbial community of GMEP is characterised in Appendix 

A. 

1.4.3 Objective 2 

To establish the relative roles of different physicochemical and biological factors in 

determining soil biodiversity.  

The influence of soil heterogeneity upon soil microbial diversity is presented in 

Chapter 3. The relationships between aboveground and belowground diversity, and 

evaluation of multitrophic diversity, is presented in Chapter 5. 
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1.4.4 Objective 3 

To explore the associations between soil physical properties and biological 

communities across Wales. 

In Chapter 3, the relationship between soil textural characteristics and soil microbial 

diversity within GMEP is analysed. The impact of soil microbial and plant community 

properties upon soil water repellency is analysed and presented in Chapter 4. 

1.4.5 Objective 4 

To evaluate the impacts of climate change on soil microbial communities and the 

potential knock-on effects on soil functions. 

The impact of climate change on the soil microbial community is evaluated within a 

long term warming and drought experiment on Welsh heathland in Chapter 6. The 

impact of these changes upon function are explored in Appendix B where the changes 

in respiration over the course of the above experiment are explored. The impact of 

drought on soil function at the Welsh landscape level is explored within the analysis of 

drivers of soil water repellency in Chapter 4. 

1.5 Experimental chapter information 

The experimental chapters of the current thesis have been prepared in the style of 

journal article manuscripts. The title page of each experimental chapter includes 

details of the authors, author contributions to the manuscript and the current 

progress of each manuscript (e.g. published / accepted / submitted / not yet 

submitted). The thesis consists of five experimental chapters, located in Chapters 2-6 

of the current document. For continuity and clarity, the experimental chapters will be 

referred to as they appear in this thesis. The titles of the experimental chapters are as 

follows: 

Chapter 2: Identifying soil functional classes from survey data at a national scale 

Chapter 3: Soil textural heterogeneity impacts bacterial but not fungal diversity 

Chapter 4: Plant and soil communities are associated with the response of soil 

water repellency to environmental stress 
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Chapter 5: A diversity of diversities: evaluating the relationships between below 

and aboveground biodiversity 

Chapter 6: Bacterial and fungal communities respond differently to realistic 

climate change manipulations over time 

Chapter 7: Synthesis and discussion 
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Abstract 

A major challenge in soil science is to monitor and understand the state and change of 

soils at a national scale, to inform decision making and policy. To address this, there is 

a need to identify key parameters for soil health and function, and determine how they 

relate to other parameters and traditional soil surveys. Here we present a national 

scale data set of topsoil sampled as part of a wider agri-environment monitoring 

scheme in Wales, UK. Over 1350 topsoils (0-15 cm) were sampled across a very wide 

range of habitats and a range of physical, chemical, and biological soil quality 

indicators measured. We show consistent differences in soil physicochemical 

properties across habitat types, with carbon decreasing and pH increasing across the 

habitat productivity gradient from bogs through woodlands and grasslands to arable 

systems. The soils within our dataset are largely within the limits identified as 

important for supporting habitat function, with the exception of excessive plant 

available phosphate (Olsen P) levels in mesotrophic grassland. Cluster detection 

methods identified four soil functional classes based on measured topsoil properties, 

which were more related to habitat type than the genesis-based soil classification from 

soil maps. These soil functional classes can be interpreted as phenoforms within the 

soil genoforms found by traditional soil classification. This shows the importance of 

land use management in determining the soil health and functional capacity of soils. 

Our work provides an accounting of the current state of soil health in Wales, their 

relationship to soil function and a baseline for future monitoring to track changes 

against agri-environment and other policy targets. 
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2.1 Introduction 

Soils underpin human existence through food, feed, fibre and timber production, as 

well as through earth system functions that support the delivery of other ecosystem 

services. Soil degradation affects 33% of all land globally according to the 

Intergovernmental Technical Panel on Soils (FAO & ITPS, 2015), and ‘52 % of the land 

used for agriculture is moderately or severely affected by soil degradation’ as reported 

in Goal 15 of the U.N. sustainable development goals. In 2015, the first U.N. ITPS 

proposed four urgent actions to tackle and reverse degradation. The fourth was the 

development of robust soil monitoring systems to determine the current state and 

trend of soil health. Soil monitoring has become increasingly important in recent 

years, as nutrient loss, erosion, and land use change have implications not just for 

agriculture but for human activities as a whole. Land use change impacts heavily upon 

soil function (FAO & ITPS, 2015), making integrated surveys for both soils and land 

management particularly opportune to understand the impacts on land use and 

climate change. The measurements we report here provide both a baseline for the 

continuing monitoring of soil health and directly align with previous monitoring 

allowing greater power to detect anthropogenic impacts on soil health. 

Traditionally, soil genesis and development studies have focused on processes 

occurring on the centennial to millennial time scales (Walker & Syers, 1976). However, 

there is an increasing recognition of the importance of sub-decadal changes in 

response to land use change, pollution and climate drivers (Varallyay, 1990). This in 

turn is leading to a greater recognition of the importance of soil change and 

determining the speed of this change (Richter Jr & Markewitz, 2001; Tugel et al., 

2005) and perhaps more importantly its potential impact on earth system function 

(Amundson et al., 2015; Schmidt et al., 2011). This shift in thinking has led to a 

difficulty in integrating the traditional methods and results in soil science, 

emphasising soil development and classification, with more recent needs for 

measuring and interpreting change in soil function which recognises the more urgent 

need for evidence and action. In addition to traditional pedogenic-based classification 

(e.g. taxonomy), several approaches to bring together soil classification based upon 

genesis trajectories and results based on soil functional properties have been 
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proposed. These include the FAO topsoil classification (Broll et al., 2006), soil 

varieties within the Genetic Soil Classification of China (Shi et al., 2010), and the 

genoform – phenoform concept (Droogers & Bouma, 1997; Rossiter & Bouma, 2018). 

Under the latter, soil classifications are seen as genoforms, which are time-invariant at 

human timescales (e.g. climate, long term organisms or land cover, relief & parent 

material acting through time). Soils that are sufficiently different within a genoform to 

substantially affect soil function and be persistent over time are classed as phenoforms 

(e.g. managed properties known to be important in soil function such as pH, and 

organic carbon). Genoforms act as fundamental controls on soil phenoforms and their 

function that can develop. This enables linkages between soil maps and function to be 

clearly expressed. 

Soil functions are inherent capabilities of the soil that include biomass and food 

production, maintaining soil biodiversity, carbon and nutrient sequestration, water 

filtration and transformation, landscape and heritage, and a source of raw materials 

(Blum, 2005). In order to track changes in soil functions, functional properties must 

be defined, which for monitoring at the national scale are required to be scalable to 

large areas and representative of functions across a variety of landscapes (Bünemann 

et al., 2018). This set of functional properties together represent a way to assess soil 

health. Here we define soil functional properties as those which can be managed in a 

habitat-specific manner and are associated with the above functions. Therefore, we 

include carbon, pH, bulk density, nitrogen, phosphorus and water repellency (Van 

Alphen & Stoorvogel, 2000). Soil carbon, pH, water content and bulk density are the 

most commonly proposed indicators for soil function due to their impacts on a wide 

range of soil functions (Bünemann et al., 2018). Bulk density, soil texture and 

associated water related properties have been considered to be key indicators for 

monitoring of physical soil health (Corstanje et al., 2017). Soil carbon and nitrogen are 

key determinants of various soil functions, including greenhouse gas emissions, 

biomass production and influencing biological communities but their exact impacts 

are often hard to evaluate (Gärdenäs et al., 2011). Other soil properties that have been 

found to be important in determining soil functions may be system-dependent; for 

example, electrical conductivity and salinity are highly influential on soil functions 
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when at high levels more common in arid or intense arable systems but are less 

important in other soil systems.  

Wales, the location of our study, has recognised the role of soil in supporting wider 

ecosystem functions by inclusion of soil carbon as a key sustainability indicator within 

domestic legislation (Well-being of Future Generations (Wales) Act 2015). As 

awareness of the role of soils in supporting key ecosystem functions has increased, 

programs to monitor and promote soil management have been put in place in various 

countries (e.g. Orgiazzi et al., 2018), and in Wales this is integrated within the Glastir 

land management scheme (Rose, 2011). In order to achieve these aims, current soils 

data is required to monitor changes in soil functions in response to wider ecosystem 

change and their downstream effects. Data on soil properties that underlie health and 

function needs to be collected using methods which are transferrable across the range 

of soils within Wales but also the UK, Europe and globally, so comparisons can be 

made at large scales (Ribeiro et al., 2015). Frequency of data collection needs to be 

sufficient to detect changes within a politically relevant time period to allow for 

adaptive change of current policies as well as slower changes. The Glastir Monitoring 

and Evaluation Programme (GMEP) scheme meets these criteria in that it collects data 

on soil as part of an integrated monitoring programme covering vegetation, soil and 

water properties using a robust soil sampling methodology which has been used 

successfully across the variety of soils in Wales (Emmett et al., 2014). GMEP uses a 

methodology used in previous surveys in 1978, 1998 and 2007 to also allow for links to 

historical datasets. The GMEP soil measurements seek to address the need for data to 

understand soil state and change at a national scale to inform policy. 

Two approaches are commonly used to monitor long-term changes in soil properties: 

(i) localised monitoring of change in response to modifications of soil treatment often 

in the form of field-scale manipulation experiments (Jenkinson & Rayner, 1977), and 

(ii) large-scale “soil quality” surveys designed to inform land use and policy (Tóth et 

al., 2013).  Our approach is unique and differs from these in that national soil change, 

and change in areas subject to management interventions, are both measured through 

the same survey design. This enables the evaluation of land management interventions 

for policy goals. The survey design is based on a stratified random approach developed 
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for a GB-wide integrated monitoring programme – the UK CEH Countryside Survey 

(Carey et al., 2008); an example map of site selection is shown in Figure 2.1. The soil 

monitoring programme also includes measurements not reported here relating to 

factors not routinely measured in large-scale soil surveys, such as a holistic evaluation 

of soil biodiversity (George et al., 2019). In addition, the survey allows for direct 

comparison between soil properties and above-ground factors such as land use change 

and plant species composition as well as streamwater quality, due to the soil and 

above-ground surveys being co-located and adjacent streams and ponds being 

sampled.  Here we present results from the first iteration of this monitoring 

programme, a survey of topsoil (0-15 cm) health across Wales. We use this data to 

identify clusters of soils with similar topsoil properties and compare these classes with 

previously mapped soil groups. Our objectives are: 

1. To present the topsoil results of a sub-decadal rolling agri-environment 

monitoring program by habitat type  

2. To determine if pH, Olsen phosphorus (Olsen P) and bulk density values are 

within the nationally determined thresholds for habitat support 

3. To evaluate the relationships between topsoil functional properties  

4. To classify soils based on topsoil properties and compare these classes to land 

use and traditional soil classification methods  

 

2.2 Methods 

2.2.1 Field measurement programme 

Topsoil measurements were conducted through a 4 year field survey of 300 1-km 

squares across Wales (Figure 2.1), half of which are focused on areas prioritised by the 

Glastir agri-environment scheme to determine the impact of land management 

interventions. The 1-km squares were selected at random from 26 land classes in 

proportion to their extent following the methodology of the UK CEH Countryside 

Survey (Carey et al., 2008; Reynolds et al., 2013), ensuring good coverage of the Welsh 

landscape. The initial survey took place over the summers of 2013 to 2016, and it is 
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these results we present here. Each year, ~75 squares were monitored with each square 

having 5 soil sampling sites, each randomly located within a segment of the square. 

The soil sampling locations are centrally located within a 200 m2 square quadrat that 

has a corresponding vegetation survey and habitat assigned by the surveyors according 

to the UK Biodiversity Action Plan broad habitat classification (Jackson, 2000). The 

soil cores for physicochemical analysis were taken with a corer of 5 cm diameter down 

to 15 cm depth after removal of vegetation and any loose litter. The major soil group 

for each site was taken from the UK National Soil Map of England and Wales (Proctor 

et al., 1998). 

 

Figure 2.1: Map of Wales and the locations of the 300 individual survey squares. Locations are randomly shifted 

to any point on land within 10 km of the original location to ensure data confidentiality. 

 

Sites were selected by a random stratified sampling method, with half the squares 

being selected to provide a representative sample of the major land classes in Wales 

whilst the remaining half weighted towards habitats of particular interest for farmer 

payments within the Glastir scheme. For the latter, each 1 km square across Wales had 

probability of being selected proportional to the score assigned to it under the Glastir 



 

48 

 

Advanced scheme by the Welsh Government. Models were used to estimate expected 

future Glastir scheme outcomes so that adjustments can be made to match Welsh 

Government priorities (climate change mitigation and water resources in years one & 

two), and scheme impact can be maximised. The national monitoring program in 

Wales has evolved from the Countryside Survey soil sampling approach and 

methodology (Emmett et al., 2008). In total there are: 20 supra-littoral sediment sites; 

39 arable sites; 388 improved grassland sites; 300 neutral grassland sites; 205 acid 

grassland sites; 79 broadleaf sites; 84 conifer sites; 86 heathland sites; 41 bracken sites; 

53 fen and other sites; and 92 bog sites. Improved grassland is composed of fast-

growing grasses typically managed as pasture or for silage production with the 

addition of fertiliser and/or lime. Neutral grasslands are usually found on soils with 

pH 4.5 to 6.5 and lack plants with strong preference for base-rich or acid soils. Acid 

grassland is characterised by plants with strong preference for acidic soils. Of the 1387 

sites, 1353 had complete measurements for pH, carbon, nitrogen, total phosphorus, 

and bulk density.  

2.2.2 Laboratory methods 

The analysis of soil variables was performed using the methods employed in the 

Countryside Survey (Emmett et al., 2008). In addition, soil surface water repellency 

was measured using the water drop penetration time method as described in Seaton et 

al. (2019). Details of the methodology are presented within the supporting 

information, and the full dataset is available from the Environmental Information 

Data Centre (EIDC) (Appendix I, Robinson et al., 2019).  

2.2.3 Statistics 

The differences in soil physicochemical properties by habitat were examined by 

providing summary statistics by habitat, counts of number of sites outside nationally 

determined threshold levels per habitat type and plotting using the ggplot2 and egg 

packages (Auguie, 2019; Wickham, 2016). The relationships between the different soil 

properties were examined using Spearman rank correlations. Classification of the soils 

was undertaken using cluster analysis upon the soil properties considered to affect soil 

functions, including pH, bulk density, carbon concentration, water content, soil 

surface water repellency, and total nitrogen. Soil properties such as total phosphorus, 
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Olsen P and electrical conductivity are considered to affect soil function but had such 

low variation in our dataset that they were not included in this analysis. Soil water 

repellency was log10-transformed before inclusion. The clusters were fit using 

hierarchical clustering with Ward’s criterion and four clusters were selected as the 

most appropriate divide based on the hierarchical tree (Murtagh & Legendre, 2011). 

The correlation of the clusters with the habitat groups was calculated using the χ2 test 

and the strength of the correlation presented using Crámer’s V statistic. All statistical 

analyses and graphing was performed in R version 3.6.1 (R Core Team, 2019). 
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2.3 Results 

2.3.1 Soil properties across habitat types 

  

Figure 2.2. Differences in soil pH (a), soil carbon concentration (b) and C:N ratio (c) across the range of habitats 

found in our study across Wales. Habitats are coloured by which aggregated habitat group they belong 

to and arranged in decreasing plant productivity order. The line bisecting each box represents the 

median value, with the box extending to the first and third quartiles of the data. The whiskers extend to 

the furthest values no more than 1.5 times the inter-quartile range. Outliers are plotted individually. 
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Topsoil pH, carbon and nitrogen concentration vary across the different habitats 

found in Wales (Figure 2.2). Arable, improved grassland and neutral grassland tend to 

have the highest pH, lowest organic carbon concentration and lowest carbon to 

nitrogen (C:N) ratio of the habitat types. The majority of all other habitat types have 

acidic soils (Figure 2.2A), with fen habitats having a slightly higher pH than the other 

habitats. Bog is an important carbon store, with a median loss-on-ignition (LOI) 

carbon concentration of ~490 g carbon kg-1 (carbon stock ~6 kg carbon m-2), with acid 

grassland, coniferous woodland, heathland and fen having large ranges in carbon 

concentration and some sites having around 500 g carbon kg-1  (carbon stock >15 kg 

carbon m-2) (Figure 2.2B). C:N ratios are generally high across the different habitats, 

particularly in the high carbon habitats (Figure 2.2). Topsoil total nitrogen follows a 

similar variation across habitats to soil carbon, although total phosphorus and Olsen P 

show limited variation with habitat (Appendix D Figure 1). Bulk density varies 

considerably across habitat types, being highest in arable followed by improved and 

neutral grasslands and lowest in bogs (Appendix D Figure 2). Rock volume of soil and 

electrical conductivity show limited variation across habitat types (Appendix D Figure 

2). 

The broad habitats identified by the surveyors were aggregated into four habitat 

groups: improved land, neutral land, upland, and woodland for ease of interpretation. 

The range of organic carbon concentration, pH, nitrogen, phosphorus and Olsen P for 

the habitat groups are presented in Table 2.1. We do not present results for Olsen P in 

upland or woodland sites due to its methodological unreliability within low pH soils 

(Emmett et al., 2010).   
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Table 2.1: Topsoil chemical properties: means ± SD, median, min and max, carbon concentration estimated 

from Loss-On-Ignition (LOI). Phosphorus measured as total phosphorus, Olsen-P results are only 

presented for improved land and neutral grassland. 

HABITAT 
GROUPS INDICATOR UNIT MEAN MEDIAN MIN MAX 

IMPROVED LAND 
N=419 

LOI Carbon g/kg dry 
soil 

53.8 ± 
25.1 

51.3 13.2 300 

Carbon 
concentration 

g/kg dry 
soil 

50.1 ± 
27.7 

46.1 5.50 313 

pH Unitless 5.83 ± 
0.54 

5.75 4.44 7.97 

Nitrogen g/100 g dry 
soil 

0.45 ± 
0.18 

0.45 0.02 1.77 

Phosphorus (total P) g/kg dry 
soil 

113.7 ± 
50.9 

112.1 9.6 398.2 

Olsen-P g/kg dry 
soil 

25.1 ± 
17.4 

19.6 2.22 104 

NEUTRAL 
GRASSLAND 
N=300 

LOI Carbon g/kg dry 
soil 

65.3 ± 
41.7 

55.2 16.6 370 

Carbon 
concentration 

g/kg dry 
soil 

61.8 ± 
43.0 

49.6 13.3 370 

 pH Unitless 5.69 ± 
0.50 

5.67 4.22 7.76 

 Nitrogen g/100 g dry 
soil 

0.52 ± 
0.28 

0.47 0.11 2.31 

 Phosphorus (total P) g/kg dry 
soil 

100.6 ± 
49.7 

96.1 16.7 397.0 

 Olsen-P g/kg dry 
soil 

17.2 ± 
15.1 

12.1 1.11 105 

UPLAND GRASS 
AND HEATHLAND 
N=467 

LOI Carbon g/kg dry 
soil 

268 ±                   
181 

219 29.6 544 

Carbon 
concentration 

g/kg dry 
soil 

262 ± 
1780 

217 24.9 545 

 
pH Unitless 4.66 ± 

0.64 
4.58 2.95 7.78 

 
Nitrogen g/100 g dry 

soil 
1.35 ± 
0.78 

1.27 0.16 3.31 

 Phosphorus (total P) g/kg dry 
soil 

100.0 ± 
45.6 

92.6 11.5 317.2 

WOODLAND 
N=162 

LOI Carbon g/kg dry 
soil 

179 ± 166 101 15.0 534 

Carbon 
concentration 

g/kg dry 
soil 

173 ± 163 95.0 10.0 530 

 
pH Unitless 4.63 ± 

0.77 
4.46 3.40 7.97 

 
Nitrogen g/100 g dry 

soil 
0.86 ± 
0.67 

0.58 0.10 2.66 

 Phosphorus (total P) g/kg dry 
soil 

80.0 ±42.6 72.6 3.0 237.1 
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Figure 2.3: The clay, silt and sand percentages of a subset of the soils (n=781) plotted on a ternary diagram. 

The soils were generally highest in silt-sized and sand-sized particles (Figure 2.3), with 

the majority being silty clay loam (n=284) or clay loam (n=232). There were also 145 

sandy silty loams, 69 sandy loams, 19 silty clays, 15 silty loams, 6 loamy sand, 6 sands, 

4 clays and 1 sandy clay loam. As the soil texture method involves organic matter 

removal prior to measurement it was only carried out on samples with lower loss-on-

ignition (LOI < 50%), so the carbon-rich soils are not included in these statistics.  

2.3.2 Thresholds 

The majority of our sites are within the pH limits used as a national guideline for 

representing good support for the ecological habitat and biodiversity within specific 

habitat types (Bhogal et al., 2008). We compare this to our new analysis of the 

Countryside Survey topsoil data which compared the Welsh sites to the same 

thresholds (Appendix D Table 1, Reynolds et al., 2013). Within the sites with 

mesotrophic grassland plant communities, i.e. improved and neutral grasslands, there 

are only 6% of sites which are outside the recommended pH range of 5-7 (Table 2.2). 

Two thirds of these 39 sites are deemed too acidic. This is considerably fewer 
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mesotrophic grassland sites than have been identified as being too acidic in Wales in 

previous surveys such as the Countryside Survey (Appendix D Table 1). However, in 

sites with acid grassland plant communities 26% of our sites have pH above 5, which 

is considered to reduce their ability to support their distinct ecological communities 

(Bhogal et al., 2008). The previous Countryside Survey sites located in Wales found 

that the proportion of acid grasslands with pH above 5 increased over time from 1978 

through 1998 to 2007 (Appendix D Table 1). Countryside Survey soils in 2007 showed 

that 24% of acid grasslands had pH above 5, which is comparable to our result. A 

negligible proportion of our sites had bulk density above the identified threshold, 

however the reliability of this threshold of bulk density as an indicator of soil status 

has yet to be fully tested due to a lack of data (Bhogal et al., 2008). Within 

mesotrophic grassland Olsen-P was higher than the threshold for habitat support in 

three quarters of the sites, which is similar to previous surveys (Table 2.2, Appendix D 

Table 1).  

 

Table 2.2: Number of sites above the UK national guidelines set by the Environment Agency. For Olsen-P this is 

10 mg/L for mesotrophic grassland, no results are presented for acid grassland and heathland. For pH 

this is <5 and >7 for mesotrophic grassland, >5 for acid grassland and heathland. For bulk density this is 

above 1.3 g/cm3 for mesotrophic grassland and 1.0 - 1.3 g/cm3 for acid grassland and heath. 

Habitat Olsen-P pH Bulk density 

Mesotrophic 

grassland 

510 sites (75.3%) 39 sites (5.7%) 8 sites (1.2%) 

Acid grassland - 51 (25.6%) 3 (1.5%) 

Dwarf shrub heath - 4 (4.7%) 0 (0%) 

 

 

2.3.3 Relationships between soil variables 

Soils across Wales show that soil organic carbon concentration, bulk density and total 

nitrogen are highly correlated with each other. The relationship between organic 

carbon concentration and bulk density follows the distinctive curved shape found in 
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previous studies of UK soils (Figure 2.4a) (Emmett et al., 2010; Howard et al., 1995). 

Total nitrogen follows a positive linear relationship with LOI carbon at low 

concentrations of carbon with a gradual levelling off and increasing variance at high 

carbon concentrations (R2 = 0.87, Figure 2.4e). High LOI carbon content soils are 

found solely in conjunction with low pH (Figure 2.4c). 

 

Figure 2.4. The major soil parameters plotted against each other and coloured by habitat group (n = 1367, 

1363, 1367, 1362, 1364 for panels a to e respectively). 
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Plotting the spearman correlations as a network shows the strong inner cluster of 

inter-correlated total carbon, bulk density and nitrogen that change in tandem across 

our sites (correlations ~ ±0.9, Figure 2.5). Highly correlated with these three are pH, 

water content and soil water repellency. The rock content of the soil, electrical 

conductivity and total phosphorus are poorly correlated with the other soil parameters 

and situated on the edge of the diagram. For the exact correlation values see Appendix 

D Table 2. 

 

Figure 2.5. The Spearman’s rank correlations between the variables plotted as a network. Each circle (node) is a 

variable, and the lines between circles represent the correlation between those two variables across the 

entire network. The width of the line is proportional to the strength of the correlation and the lines are 

coloured with blue for positive correlations and red for negative correlations. The layout of the network 

is selected by an algorithm that attempts to put strongly related variables closer together. The node 

labels correspond to BD = bulk density (log), C = total carbon concentration, EC = electrical conductivity 

(log), N = total nitrogen, P = total phosphorus, pH = pH, POI = Olsen-P, Rck = rock volume in soil, SWR = 

soil water repellency (log), Wtr = volumetric water content.  
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2.3.4 Alternative soil classifications 

Using the key soil parameters identified in the previous section (total carbon 

concentration, total nitrogen, bulk density, pH, water content and water repellency) 

we placed our soils into different categories. The cluster dendrogram from the k-

means method of clustering usefully organised the hierarchical patterns of similarity 

in the dataset. This allowed the most ecologically informative clusters to be identified, 

striking a compromise between too few with too much internal variance versus too 

many similar groups, resulting in four approximately equally sized categories (Figure 

2.6). We plotted these soil categories against the properties used to create these 

clusters and named the categories as: organic; organo-mineral; acid mineral; and 

neutral mineral soils (Appendix D Figure 3, Appendix D Table 3). 

 

 

Figure 2.6. The results of the classification algorithm in dendrogram form. The tree diagram is truncated to 

remove individual data points. The groups identified by visual inspection are surrounded by coloured 

boxes, with the colours corresponding to the colours used in Figure 7. From left to right: group 1 (308 

members, orange: improved grassland), group 2 (280 members, green: woodland), group 3 (350 

members, pink: neutral grassland) and group 4 (437 members, blue: upland). 
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The classification of soils into our categories showed a stronger relationship with the 

aboveground habitat than the major soil group within the mapped classification by 

genesis did (Figure 2.7). Both soil classification systems were significantly associated 

with the aggregated habitat group (χ2 test, p < 0.001), however the relationship 

between the soil topsoil properties classification and habitat was stronger than the 

relationship between the soil genesis classification and habitat (Crámer’s V were 0.455 

and 0.301 respectively). The results for broad habitat were also significant and showed 

the same pattern of strength. The topsoil properties classification strongly separated 

out the bog which was found only on the organic class and the arable which was found 

almost solely on neutral mineral soils. All other habitats showed a definite trend with 

the topsoil properties classification. Improved and neutral habitats were more likely to 

be associated with acid and neutral mineral soils, or brown soils in the case of the 

mapped soil classes. There are differences in the proportions of topsoil properties 

clusters per each mapped soil unit (χ2 test, p < 0.001, Crámer’s V = 0.356), but every 

mapped classification had at least one example of every topsoil functional cluster with 

limited differences in proportions across the three most numerous mapped soil classes 

(Appendix D Figure 4). 
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Figure 2.7: The different habitats distributed across the different soil classification types, classification by 

genesis (a) and topsoil properties (b). 

 

2.4 Discussion 

2.4.1 Key soil parameters status and correlations 

The range and distribution of soil physicochemical properties found within this survey 

are in agreement with previous national scale surveys of UK soils (Baxter et al., 2006; 

Bellamy et al., 2005; Reynolds et al., 2013). The trend in carbon and pH with habitat 

showed that arable and improved grassland habitats had the lowest carbon 

concentration and acidity, with these increasing in the lower productivity habitats 

such as bogs and heathland. Wales contains many carbon-rich, low pH soils which are 

not always included in other surveys due to their focus on soils of high agricultural 

production (e.g. Baxter et al., 2006). However the improved lands included within our 

survey had pH levels consistent with previous studies of agricultural lands within 

Wales (Baxter et al., 2006; Reynolds et al., 2013). Compared to the rest of Europe 

Welsh soils have on average higher carbon concentration and lower pH, this is also 
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true when only comparing them with the soils from the Atlantic climatic region (Tóth 

et al., 2013). This may be related to the general dominance of an acid geology, and the 

high precipitation, as globally there is lower pH in areas with greater precipitation 

which is thought to be linked to acidity and slower decomposition, thus enabling a 

build-up of soil organic matter (Slessarev et al., 2016). Our soil texture results also 

support evidence from the National Soil Survey that Wales is lacking in finer-grained, 

clay mineral, soils compared to the rest of the Atlantic region of Europe (Tóth et al., 

2013). All of these properties will contribute to the generally low productivity of many 

Welsh soils and infrequent presence of arable farming systems. 

The relationships between the different soil physicochemical variables are consistent 

with those found previously in the UK Countryside Survey, especially the strong 

correlation between carbon concentration and pH and other variables such as total 

nitrogen and bulk density (Reynolds et al., 2013). The distinctive curved negative 

association of carbon concentration with bulk density has been found by many studies 

across a variety of climatic zones (Emmett et al., 2010; Howard et al., 1995; Périé & 

Ouimet, 2011). There was limited correlation of total phosphorus, Olsen-P phosphate 

or electrical conductivity with the other variables in our dataset which suggests 

phosphorus supply is not primarily linked to organic matter formation but rather the 

composition of the soil parent material and potentially in some cases the external 

supply of phosphorus from fertilisers. 

The comparison of our soils to nationally set thresholds enable us to increase our 

understanding of soil health across Wales in a domain-specific manner. Some 

thresholds are relatively well established, such as those for pH and Olsen-P which 

have been identified for different environmental interactions and habitat support 

(Bhogal et al., 2008). Other indicators have been proposed, such as bulk density, soil 

carbon and C:N ratio but often there is limited evidence and/or consistency across 

ecosystems in the impact of these (Bhogal et al., 2008). Bulk density, together with 

clay content, has been proposed as a soil quality indicator for British soils in relation 

to trends over time rather than passing a pre-identified threshold (Corstanje et al., 

2017). We have limited sites at the higher levels of bulk density which makes it 

difficult to evaluate the threshold value and overall there was little correlation 
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between bulk density and soil biological indicators such as total mesofauna (George et 

al., 2017). Bulk density within our data strongly correlated with soil carbon, which may 

suggest that in these types of soil systems bulk density and carbon represent the same 

aspects of soil health. Instead of a single threshold, it has been suggested that evidence 

of decreasing soil carbon acts as a trigger value, in particular due to its relevance to 

carbon storage and biogeochemical cycling. The continuation of this survey in the 

coming years will allow clear identification of any habitats that may be losing carbon 

and thus should be targeted for land management interventions. Past surveys for 

Wales using the same methodology and some common locations in Countryside 

Survey did not identify any consistent trends in carbon concentration or density 

between 1978, 1998 and 2007 (Reynolds et al., 2013).  Other survey and modelling 

approaches have suggested soils for the UK are on average losing carbon (Bellamy et 

al., 2005; Jenkinson et al., 1991; Jones et al., 2005), or are remaining stable (Reynolds 

et al., 2013; Smith et al., 2005). However, trends appear to be highly specific to land 

use types e.g. soil carbon loss in arable soils and but gains in woodland soils (Reynolds 

et al. 2013) and thus country-level trends perhaps mask important trends linked to 

specific management practices within land use type. It is important to note also that 

this survey does not measure changes in subsoil carbon, which is critical for carbon 

storage and likely to be less influenced by land use than topsoil carbon, limiting the 

inferences that can be made about the overall soil carbon stock and changes (Harrison 

et al., 2011; Simo et al., 2019). 

We have found three quarters of our mesotrophic grassland sites with Olsen-P above 

the trigger value related to habitat support, which is similar to the 60 % and 90% of 

mesotrophic sites we found to be above the trigger value in the Countryside Survey in 

2007 and 1998 respectively. Globally, phosphate decreases in grasslands have been 

predicted from model data (Sattari et al., 2016), and have been previously reported in 

Wales from Countryside Survey data (DeLuca et al., 2015; Reynolds et al., 2013). This is 

linked to the 60% reduction in use of P fertilisers in the UK from the 1980s to 2010 

which has since stabilised (The British Survey of Fertiliser Practice, 2019), which could 

be expected to impact across the landscape even on unimproved land due to reduced 

transfer of phosphate by hydrological or atmospheric pathways. Reduced grazing 
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could be reducing the removal of phosphate by preferential grazing on phosphorus 

enriched areas and thus reducing its diversion away from grazing sites (Schütz et al., 

2006; Statistics for Wales, 2016). High levels of phosphate have been linked to lower 

plant diversity (Critchley et al., 2002; Michalcová et al., 2011). Moreover, elevated 

phosphate levels can persist in the soil for long periods, and have lasting impact on the 

plant communities that can establish at a site (Horrocks et al., 2016). 

The current proportion of sites that are outside the pH thresholds are comparable to 

the most recent surveys of the Welsh countryside by Countryside Survey in 2007, 

which is markedly less acidic than surveys within 1978 and 1998 (Reynolds et al., 

2013). This can be interpreted as stabilisation rather than continued recovery from 

historic acidification due to atmospheric acid deposition. This does not necessarily 

mean that Welsh soils are fully recovered from acidification, as there are some 

indications from model data that recovery from acidification is not yet complete 

(RoTAP, 2012). The stalling of recovery from acidification could indicate that the soils 

have entered into a lower pH stable state (Suding et al., 2004), thus to enhance 

productivity some soils may require active remediation to return to pre-acidification 

pH.  Similar results showing reductions in recovery from acidification are reported for 

woodland and other organic soils (Evans et al., 2008; Kirk et al., 2010; Reynolds et al., 

2013), attributed to vegetation uptake of base cations, nitrogen deposition or capture 

of acidic pollutants by woodland canopy which offsets SO2 reductions. This does 

however raise the issue as to whether the assumption that a pH of less than 5 is 

required for habitat support in acid grassland and dwarf shrub heath will hold, as the 

impacts of anthropogenic acidification are reduced and soil pH values increase across 

the UK. The shifting baseline in soil pH may be altering our perception of what 

constitutes a good pH value for an acid grassland (Soga & Gaston, 2018). The 

thresholds for pH were established based largely on data from UK grasslands in the 

1990s (Bhogal et al., 2008), which would represent sites that are in the process of 

recovery from intense acidification and therefore may not actually be similar to a true 

natural state. The pH trigger values for supporting metal retention and microbial 

function are actually contradictory with that suggested for supporting acid grassland 

and heathland habitats (<5 and >5 respectively), and recent results indicate microbial 
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function may decrease below pH 5.5 rather than 5 exacerbating this difference (Jones 

et al., 2019). This shows the difficulties in designating appropriate boundaries when 

multiple functions and services are involved, especially when the different functions 

show differing responsiveness to change (Bhogal et al., 2008; Bünemann et al., 2018; 

Jarvis et al., 2019). 

 

2.4.2 Soil classification 

The soil physicochemical clusters identified in this work have strong similarities with 

previous analysis of UK soils. Analysis of the soils collected as part of the Countryside 

Survey of the UK in 2007 found that there were three main clusters of soil 

physicochemical properties corresponding to mineral soils, organo-mineral soils and 

organic soils (Simfukwe et al., 2010). In our data we split the mineral soils into two 

groups, however in other respects our classifications are similar. These results support 

the use of soil organic material in categorising soils, as evidenced by the use of carbon 

classifications within multiple classification systems (Broll et al., 2006; Emmett et al., 

2010). 

Our analysis has shown that as we hypothesised the traditional soil classification 

methods, such as that used within the UK soil classification (Avery, 1980), are weakly 

correlated with differences in habitat type and land use while those based on key 

topsoil manageable parameters are more strongly related. This is consistent with 

previous results showing that soil dissolved organic carbon is not well related to soil 

type in UK soils (Simfukwe et al., 2011). We have also found that there seems to be 

only limited relationship between our identified topsoil class and the traditional 

classification, with the exception of peat soils. This suggests that there may be limited 

constraints from the soil genesis type upon the functional nature of the topsoil, 

indicating the importance of management decisions in determining soil function. The 

functional capacity of the subsoil, however, may be more constrained by the soil 

genesis type than land cover. Therefore soil functions which are dominated by 

different soil horizons may have influenced more or less strongly by the plant 

community versus the soil genesis type. One key limitation of this analysis is that the 
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soil classification by genesis was taken from a map based largely on data collected 

from 1960-1970 and which fails to capture changes in soil management and land use 

that have occurred since then. In addition, our survey locations were classified at the 

soil association rather than series level. Soil surveying to classify soil genesis is time 

consuming and labour intensive, often making funding of large-scale soil surveys 

unattractive. In practice, many key survey and modelling results are either based on 

previous soil mapping efforts or topsoil sampling only, which is what we have 

compared here to land cover. Many ecosystem service maps use the soil classification 

maps, when actually soil function is more related to the plant communities and land 

cover type. 

The soil properties we have presented here are a selection of properties that are known 

to influence soil function and are both manageable and measurable at a national level. 

The soil properties that are often measured in the scientific literature to represent 

function, e.g. carbon mineralisation rates (Simfukwe et al., 2011), are usually difficult 

to scale up to large areas due to factors such as expense and limited generality across 

landscapes (Sanchez et al., 2003). Many of these properties can also be only measured 

in a laboratory environment on highly processed soils which means that they can fail 

to capture the conditions as they really exist, particularly the influence of plants in 

regulating soil functioning (Carlyle et al., 1998; Oburger & Jones, 2009). Different 

functions can also respond differently to the soil properties considered here and even 

soil biodiversity can be represented by different aspects with different responses. For 

example, in our sites microbial diversity is highest in our habitats with high pH and 

low carbon (George et al., 2019) while mesofaunal abundance is highest in habitats 

with more intermediate pH and carbon (George et al., 2017). However, some 

properties such as soil carbon have been widely accepted to be indicators of soil 

function, influencing greenhouse gas emission, nutrient cycling, water filtration and 

biomass production among others (Amundson et al., 2015; Bünemann et al., 2018; 

Environment Audit Committee, 2016; Rossiter & Bouma, 2018). It is these parameters 

– pH, carbon, nitrogen, bulk density and water – that we have found to be pivotal in 

determining the topsoil property classes of our Welsh soils and therefore why we term 

these functional clusters. 
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The clusters we have found behave differently in their functional attributes reflecting 

their different land management regimes. The key functional attributes of soil vary 

depending upon their pedogenic characteristics and the overlying land use. We see 

the classes proposed by our analysis as a way of reducing complexity to enable 

comparison of like-for-like, and consequently, we do not apply the principles of 

functionality derived from lowland arable soils to upland peatlands. This comparison 

of appropriate classifications is particularly relevant for determining policy at the 

national scale, when balancing the need for provision of multiple functions across a 

heterogeneous landscape. There is no way to tell within our data whether differences 

in areas targeted for agri-environment interventions are due to the scheme or pre-

existing conditions and thus, we have not evaluated that here. However, the dataset 

presented here offers an understanding of the current state of soil health in Wales that 

can be used as a baseline for future surveying to evaluate the response of soil health 

and function to land management interventions. The differences in soil health and 

function across habitats we have found show the importance of land management to 

soil function. 

There have been objections to the principle of classifying soils into strictly defined 

categories since the advent of soil classification systems (Webster, 1968). In response, 

many authors have chosen to use fuzzy mathematical methods to classify soils 

(Burrough, 1989; Mazaheri et al., 1995; Stevenson et al., 2015). This can allow any 

given soil to belong to more than one class, potentially better capturing the range of 

soils between different classes than the artificially abrupt boundaries between classes 

in a hierarchical classification system. Soils generally exist on a continuum in trait 

space, exhibiting different characteristics across a variety of landscapes. They can also 

change over time and under different management practices; particularly those 

already at the edge of the categorisation boundaries. Results such as ours which find 

certain categories of soils based on their properties should be interpreted within this 

context. Whilst categorisation is a useful tool for informing management and 

monitoring, it cannot represent the full breadth and flexibility of soil types. 

The clusters of soils we have identified can be aligned to the phenoform concept, 

where the phenoforms are the functional clusters which can be nested within the 
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genoforms, i.e. the mapped soil classes by genesis. However, we have found that the 

genoform poses no major constraint upon the types of phenoform that can develop 

there, which suggests the nested nature of the genoform-phenoform concept may be 

an unnecessary complication in practice at least with respect to topsoil. One issue 

with the comparison of our results to the genoform-phenoform concept is that the 

phenoform definition considers only soil properties that are persistent and require 

substantial management change to alter (Rossiter & Bouma, 2018). The properties 

often identified as being key to functional classification, such as carbon and pH, are 

experiencing ongoing change and are the target of key initiatives such as the 4 per 

mille initiative which aims to increase global soil organic matter stocks by 0.4% per 

year (Minasny et al., 2017). There is a conflict in the application of the phenoform 

concept that hinges on the identification of what constitutes “substantial” 

management. This conflict reaches its peak when considering changes over time. If we 

were now to find that the 4 per mille initiative was successful then this would 

constitute enough change to alter the phenoform of all of our soils. But if all change in 

tandem, as occurred with the recovery from acidification in UK soils (Reynolds et al., 

2013), then new attempts to define phenoforms on the basis of cluster analysis of soil 

properties will not show these changes and find the same phenoforms again. It may be 

unlikely that different areas will respond in tandem to external changes due to 

differences in the application of these changes, the inherent differences in 

responsiveness of different habitats, and the non-linearities of change directions as 

indicated in the fundamental different direction of soil carbon losses within different 

land use types reported by Reynolds et al. (2013). However, the direction and 

magnitude of change within soils is a key constraint on the application of the 

phenoform concept that requires further investigation. The value of repeated soil 

monitoring in establishing any trends in health and presence of phenoforms cannot be 

overstated, as soil health is dynamic at management relevant timescales.  

2.5 Conclusions 

We present a national dataset which provides a baseline for the survey of Welsh 

topsoils (0-15 cm), allowing for the quantification of the current health of the soil and 

enabling future surveys to track trends in these conditions. We show that there are 
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consistent differences in soil properties across habitats. Few of our soils are outside 

established thresholds of pH and bulk density for ecosystem health, but high levels of 

phosphate in improved grasslands remain an issue. Several key soil properties, such as 

carbon, nitrogen and pH, are strongly correlated across our soils and can be used to 

create a classification of the soils. We propose that our conceptual classification of the 

topsoil is related to soil functionality, due to the known relationships between the key 

soil properties featured here and soil functions. Consequently, the functional 

classification of the topsoil developed in the present analysis is more related to land 

use type than soil classes based on traditional methods. 
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Abstract 

Soils harbour high levels of microbial diversity, underpinning their ability to provide 

key soil functions and ecosystem services. The extreme variety of soil microbial life is 

often explained by reference to the physical and chemical heterogeneity of the soil 

environment. However, detailed understanding of this link is still lacking, particularly 

as micro-scale studies are difficult to scale up to the soil profile or landscape level. To 

address this, we used soil samples collected from a wide range of temperate oceanic 

habitats (e.g. arable, grassland, coniferous and deciduous woodland, heathland; 335 

sites in total) to evaluate the link between soil texture and microbial diversity. Soil 

particle size distribution was measured in each sample using laser granulometry (i.e. 

sand, silt, clay), while the diversity of bacterial and fungal communities were 

determined by sequencing 16S and ITS1 taxonomy marker gene regions respectively 

using an Illumina MiSeq. Multifractal analysis of the soil particle size distribution was 

then used to describe the heterogeneity of the soil particles. Overall, our results 

showed no impact of habitat type upon textural heterogeneity indicating that it is an 

aspect of soil quality resistant to management decisions. Using a structural equation 

modelling approach, we show that soil textural heterogeneity positively influences 

bacterial diversity but had little impact upon fungal diversity. We also find that 

textural composition impacts both bacterial and fungal composition, with many 

specific microbial taxa showing co-occurrence relationships with clay and fine-silt 

sized particles. Our results strongly indicate that soil textural heterogeneity influences 

microbial community diversity regardless of soil management practices and 

biophysical activities. The close linkages between different groups of soil organisms 

can obscure the mechanisms driving the development of biodiversity, however, it is 

clear that the soil physical environment has differential impacts on organisms with 

different life history strategies. 
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3.1 Introduction 

The rich reservoir of microbial diversity within the soil performs many functions and 

offers many resources, including controlling geochemical cycles, remediating 

pollution, providing novel pharmaceutical products and more (Ling et al., 2015; van 

der Heijden et al., 2008). There is often reference to the billions of soil microbes 

within a gram of soil, yet the mechanisms leading to the establishment of such 

diversity are still poorly understood (Bardgett & van der Putten, 2014). The 

heterogeneity of soil particles and their structural arrangement has been suggested to 

explain this diversity, as it leads both to an increased variety of environments for 

organisms and isolates communities promoting differentiation (Or et al., 2007; Tecon 

& Or, 2017; Vos et al., 2013; Zhou et al., 2002). Heterogeneity of soil structure can also 

lead to spatial heterogeneity of nutrient availability and other physicochemical 

properties which has been shown to lead to increased microbial diversity (Curd et al., 

2018). However, microbial communities also moderate the heterogeneity of their 

surroundings, altering not only the chemical environment but also the physical 

structure of the soil using hydrophobic films and aggregate formation (Totsche et al., 

2010). Soil heterogeneity both drives and is driven by microbial diversity and function 

(Young & Crawford, 2004). 

Structural heterogeneity of the soil environment leads to increased physical niche 

space and spatial isolation which should increase microbial diversity (Wang & Or, 

2012). Here we consider the physical niche space to be the dimensions within the 

multidimensional ecological niche that are determined by the physical environment. 

There is evidence that soil microbes do show preference for certain physical niches, as 

microbial communities differentiate between different minerals (Nishiyama et al., 

2012) and particle size fractions (Gardner et al., 2012; Hemkemeyer et al., 2018; Poll et 

al., 2003). These preferences could be due to the physical or chemical properties of 

certain minerals, with microbes showing preference for minerals that provide certain 

nutrients (Roberts, 2004). Also the surface area to volume ratio of mineral material 

could influence microbial community assembly and activity, with links between 

surface area ratio and bacterial communities being found in marine sediments (Wang 

et al., 2015). Therefore, we should expect that as different particle size fractions are 
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available, differing microbial assemblages should be present. This leads to the 

expectation of a wider range of communities and increased overall diversity as there is 

a wider range of particle size fractions available. Spatial isolation of communities can 

lead to increased speciation and reduce competitive pressure leading to increased 

overall diversity. In soil, spatial isolation of communities is based upon both the 

texture of the soil and its water content; altering these properties to increase isolation 

of bacterial communities has been shown to increase overall diversity (Carson et al., 

2010). The water content of the soil is also influenced by texture (Rawls et al., 2003), 

with feedback effects on microbial communities and soil functions (Carson et al., 

2010; Rabot et al., 2018). 

The impact of soil textural heterogeneity upon microbial activity and diversity is 

moderated by the motility of those organisms within their environment. Bacterial 

movement and communities are largely limited to water filled areas. Bacteria also have 

limited capacity for directed movement, only capable of moving themselves very short 

distances. However, larger organisms (e.g. earthworms, plant roots) can break up the 

soil structure and move bacteria long distances, as can the mass flow of water (Yang & 

van Elsas, 2018). Other organisms such as hydrophobic fungi are much less limited to 

hydrated areas and can, in some cases, grow across vast distances relative to their size 

(Ferguson et al., 2003; Tecon & Or, 2017). The ability of an organism to migrate 

through the soil, and the interactions between different organisms, completely change 

the impact of soil structure upon biological activity and diversity. 

Here we investigated how soil textural heterogeneity altered across a variety of 

temperate habitats and then assessed the impact of soil texture on bacterial and fungal 

communities. We used laser granulometry to analyse soil texture, enabling detailed 

characterisation of the soil particle size distribution. Due to the highly managed 

aspect of the landscape, and the fact that textural class is more closely related to 

parent material than aboveground community, we expected that the habitat type 

would have minimal impact on soil texture class. We hypothesised that soil textural 

heterogeneity would increase diversity of both bacteria and fungi, driven by 

associations of different microbial taxa with certain particle size fractions. In 

particular, we hypothesised that soil textural heterogeneity would positively impact 



 

81 

 

bacterial and fungal richness after accounting for changes in pH and soil carbon, 

which have been previously identified as strongly related to microbial diversity in UK 

soils (Griffiths et al., 2011). We also hypothesised that shifts in diversity would be 

driven by different microbial groups associating with different particle size fractions 

and consequently, that microbial composition would be more affected by textural 

composition than textural heterogeneity. 

3.2 Methods 

3.2.1 Sample collection  

Soil samples were collected as part of the Glastir Monitoring and Evaluation 

Programme from sites across Wales (Emmett & the GMEP team, 2017). Sites were 

randomly selected from land use classes in proportion to their extent in order to be 

representative of the variety of Welsh habitats (e.g., arable, improved and unimproved 

grassland, broadleaved and coniferous woodland, heathland), and dominant soil types 

(e.g., Cambisols, Podzols, Gleysols, Histosols, Lithosols, Rankers). In total, there were 

127 individual 1 km squares with up to three sampling sites randomly located within 

each square (Figure 3.1). The majority of these sites were grassland (132 improved 

grassland, 89 neutral grassland and 37 acid grassland), with 14 arable sites, 22 

broadleaved woodland, 18 coniferous woodland, 10 marshland and 13 other. Topsoil 

samples (0-15 cm) were collected in summer 2013 and 2014 and analysed for multiple 

soil properties including total organic carbon and pH. Soil pH was measured by 

suspending 10 g of fresh field-moist soil in 25 ml of 0.01 M CaCl2. After air-drying the 

soil samples had particles greater than 2 mm size removed and the remaining fine 

earth fraction ground by a deagglomerator (Pulverisette 8; Fritsch GmbH, Idar-

Oberstein, Germany). Total organic carbon of the ground fine earth fraction of the soil 

was measured by oxidative combustion followed by thermal conductivity detection 

using the Elementar Vario EL (Elementar UK Ltd., Stockport, UK). Methods were 

consistent with the United Kingdom Countryside Survey; for a full description see 

Emmett et al. (2008) and George et al. (2017).  
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Figure 3.1. Map showing the location of the survey square locations used in this study. 

 

3.2.2 Laser granulometry 

Soil samples with less than 50% organic carbon were selected for analysis (n = 335). 

Prior to analysis, each air-dried sample was subsampled by manual quartering and 0.5 

g removed and treated with H2O2 to remove organic carbon following the method of 

Gee and Or (2002). Once the organic carbon had been removed, the samples were 

transferred to 250 ml bottles, and 5 ml of 5% sodium hexametaphosphate (Calgon®) 

added to promote particle dispersal and the samples were shaken overnight at 240 rev 

min-1. The particle size distribution in each sample was then determined with a laser 

diffraction LS320 particle size analyser (Beckman-Coulter Inc., Pasadena, CA). In brief, 

this involved dispersal of the sample within a bath and subsequent passage of the 

sample through a measurement cell. Within the analyser there is a change in detector 

type at small particle sizes, as the higher ratio of particle dimension to light source 

wavelength lowers the sensitivity of the method and makes it more difficult to obtain 

accurate size values. To extend the lower size limit to 40 nm the patented Polarization 

Intensity Differential Scattering (PIDS) technology was used to determine particle 
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sizes below 1 μm. The outflow from the machine was also passed through a 63 μm 

sieve and the collected sand-sized particles weighed. This allowed the sand content 

measured by the laser to be verified. 

To convert the machine measurements into a particle size distribution an optical 

model must be used, and we chose to use the Mie theory approach (Bieganowski et al., 

2018). The choice of optical model is known to be highly influential on the results, and 

improper model choice will make any further analysis meaningless (Keck & Müller, 

2008). Soil is a composite material, and its components have different refractive 

indices which can make model specification challenging. Values of the optical model 

reported in the literature vary considerably (Bieganowski et al., 2018), and many 

papers do not mention which parameters they used. For our analysis we used an RI of 

1.55 and an AC of 0.1, as in Özer et al. (2010). This best reproduced the known particle 

size fractions of internal laboratory soil standards representative of our soils. 

 

3.2.3 Fractal analysis 

The increasing use of laser granulometry to describe soil particle size distributions has 

led to a need to find more descriptive measures of the shape of the particle size 

distribution (Bieganowski et al., 2018). One increasingly popular method is the use of 

fractal geometry to describe the heterogeneity of the soil particle size distribution 

(Millán et al., 2003; Miranda et al., 2006; Rodríguez-Lado & Lado, 2017; Yu et al., 

2015). Tyler and Wheatcraft (1992) used a single fractal model to describe fractal 

scaling of soil particle size, but found that many soils did not exhibit simple fractal 

scaling. Instead of the simple power law of fractal scaling, soils can be analysed in 

terms of multifractal scaling as first shown by Grout et al. (1998). Multifractal analysis 

uses a spectrum of fractal dimensions to describe systems that have different fractal 

properties at different scales or regions (Stanley & Meakin, 1988). 

Within this paper multifractal analysis was undertaken according to the moment 

method as described in Salat et al. (2017). The Rényi dimension Dq for the parameter q 

is defined according to equation 3.1. 
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𝐷𝑞 =

1

𝑞 − 1
lim
𝜀→0

log 𝜇(𝑞, 𝜀)

log 𝜀
 3.1 

Where ε is the size of the box and μ(q, ε) is defined according to equation 3.2. 

 𝜇(𝑞, 𝜀) = ∑𝑝𝑖
𝑞 3.2 

And pi is the proportion of mass in the ith box of size ε.  

A single fractal is characterized by the equality of the values of 𝐷0, 𝐷1 and 𝐷2 (Posadas 

et al., 2001). If Dq decreases strictly for increasing parameter 𝑞 ≥ 0, then the measure 

is called multifractal (Peitgen et al., 1992). The various multifractal parameters give 

different types of information about the distribution. D0 is known as the box-counting 

dimension and is equal to 1 when all subintervals are occupied at all scales and 

declines with increasing empty subintervals. D1 is known as the entropy dimension 

and quantifies the degree of disorder present in the system – most heterogeneous 

gives D1 ≈ 1, most homogenous gives D1 ≈ 0. D2 is known as the correlation dimension 

as it computes the correlation of measures contained in size ε (Posadas et al., 2001). 

 

3.2.4 Microbial community characterisation 

Soils were homogenised by sieving with a sterilised 2 mm stainless steel sieve. 

Sterilisation was achieved using high-level laboratory disinfectant and 5 min UV-

treatments on each side. DNA was extracted in triplicate using PowerLyzer PowerSoil 

DNA Isolation Kits (MO-BIO) upon 0.25 g of soil per sample. Primers for the 16S 

(prokaryotes) and ITS1 (fungi) regions were used to create triplicate amplicon libraries 

using a two-round PCR. Taxonomy was assigned through QIIME using the 

GreenGenes database v. 13_8 and RDP methodology (Wang et al., 2007) for 16S data. 

Taxonomy was assigned to the ITS1 OTU table using the UNITE database v. 7.2 (Quast 

et al., 2013). Singletons and OTUs appearing in only 1 sample were removed from OTU 

tables. Archaeal, mitochondrial and chloroplast OTUs were removed from the 16S data 

and non-fungi OTUs from the ITS data. For full details on the methodology used see 

George et al. (2019). To account for differences in read depth across samples, the 

bacterial and fungal OTU tables were rarefied to 18800 and 1500 reads respectively 

(Oksanen et al., 2018; Weiss et al., 2017). Rarefaction was repeated 50 times for 
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bacteria and 100 times for fungi and the rounded mean used for the calculation of 

OTU richness which we use as our measure of alpha diversity. 

 

3.2.5 Statistical analysis 

All statistical analysis, including the calculation of multifractal parameters, were 

performed in R version 3.5.0 (R Core Team, 2019). The sand, silt, clay percentages of 

the samples were assigned to texture classes from the UK Soil Survey of England and 

Wales and plotted on a ternary diagram using the soiltexture package in R (Moeys, 

2015). Figure 3 was plotted using the ggplot2 package (Wickham, 2016). The impact of 

habitat on the fractal parameters D0, D1, D2, D1/D0 and D2/D1 was tested using 

ANOVAs, with significance assessed using the Bonferroni correction (i.e. p < 0.05/5 

for significance). 

A correlation network was created from Spearman’s rank correlation of the log-ratio 

transformed particle size bins (i.e. size fractions), and plotted using the qgraph 

package (Epskamp et al., 2012). Significant correlations were identified by the 

asymptomatic t approximation, with the p value required for significance lowered 

using a Bonferroni correction. The walktrap algorithm within the igraph package was 

used to detect the presence of clusters within the network, limiting the network to 

only significant positive links (Csardi & Nepusz, 2006).  

We used structural equation modelling (SEM) to evaluate the relative influence of soil 

texture on bacterial and fungal diversity. SEM was chosen due to its ability to evaluate 

multiple processes at once and thus offer a more complete picture of the complex 

network of processes affecting soil microbial ecology (Grace et al., 2010). A SEM 

model was built using the lavaan package in R (Rosseel, 2012), and using the 

lavaan.survey package to account for the spatial structure of the data by incorporating 

square identity (Oberski, 2014). Land use intensity was encoded as a binary predictor, 

with arable, improved grassland and neutral grassland being set to 1 (intensive land 

use) and all other habitats being set to 0 (extensive land use). In total there were 310 

samples with both texture and microbial data, with 221 samples being coded as 

intense land use. Summary statistics for the data included in the SEM can be found in 
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Supplementary Table S1. We assumed no direct effect of precipitation or elevation 

upon bacterial or fungal diversity. Links that were pre-identified as being potentially 

nonsignificant and also having a p-value greater than 0.2 were removed in a stepwise 

manner until the best model according to AICc was found. 

The correlation between the bacterial and fungal compositions and textural 

composition was first evaluated by repeated calculation of the Procrustes statistic 

using the protest function in the vegan R package. To examine if the particle size 

impacted the microbial community, the particle size bins were aggregated into 9 

categories (three per sand, silt and clay respectively) and these were fitted as vectors 

to a non-metric dimensional scaling (NMDS) ordination in vegan. The common taxa 

for bacteria and fungi were tested for co-occurrence relationships with specific particle 

size bins by calculating the spearman rank correlations between the microbes and the 

particle size bins and limiting to those that were significant with Bonferroni correction 

(Harrell, 2017). 

 

3.3 Results 

3.3.1 Soil texture 

Our samples showed considerable spread across soil texture categories (Figure 3.2), 

consistent with the previously measured range of soil types across Wales (Proctor et 

al., 1998). Many of our samples were classified as clay loam (n = 125) with silty clay 

loam also constituting a significant proportion of the samples (n = 97). The next most 

abundant categories were sandy loam and sandy silt loam with 36 and 38 samples 

respectively. All other categories had fewer than 15 samples. 
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Figure 3.2. Sand, silt and clay percentages of our samples plotted on a ternary diagram to show the range of 

texture classes examined in this study. Sa, sand; Si, silt; Cl, clay; Lo, loam. 

 

As expected, the amount of particles in a particular size category was strongly 

positively correlated with the amount of particles in adjoining categories (Figure 3.3). 

The very smallest size categories, of less than 0.1 µm, were strongly negatively 

correlated with larger clay sized particles (0.16 to 2.2 µm). Two clusters of related 

nodes within the network were detected with overall modularity 0.48: a fine silt and 

coarse clay-sized particle cluster (0.13-13 µm); and a sand, coarse silt and very fine 

clay-sized particle cluster (0.04-0.13 µm and 15-2000 µm).  
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Figure 3.3. Correlation network of soil particle size bins and multifractal parameters. Each circle is a node that 

represents a variable measured, with lines between nodes representing the correlation between those 

variables. Nodes are coloured according to identity: with a colour gradient of red for clay through yellow 

for silt and blue for sand. Triangular nodes represent the summed proportions of clay, silt and sand. 

Rectangular pink nodes represent the Dq values for q through -5 to 5. Red lines indicate negative 

correlation and blue positive, with the width of the line proportional to the strength of the correlation. 

Only correlations with an absolute value of rho > 0.5 are shown. More closely related nodes are 

clustered closer together as much as possible. 

 

3.3.2 Multifractal parameters 

D declined with increasing q, showing that the soil particle size distribution does not 

follow a power law distribution. This indicated that a single fractal model would be 

inappropriate for our data. The box counting dimension (D0) varied from 0.907 to 1, 

the entropy dimension (D1) from 0.693 to 0.97, and the correlation dimension (D2) 
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from 0.45 to 965, with medians of 0.997, 0.920 and 0.890 respectively (Appendix E 

Table 2).  

The box counting dimension was positively correlated with sand content (Spearman’s 

rank rho = 0.62; Figure 3.3). Sand content was significantly negatively correlated with 

all Dq values when q was negative (rho -0.31 to -0.33) and positively correlated with all 

Dq values when q was positive (rho = 0.54, 0.44, 0.37, 0.32 and 0.28 for D1, D2, D3, D4 

and D5, respectively). Many of our samples had no coarse sand present, while smaller 

size categories were ubiquitous, even if they were present at very low percentages. 

Therefore, the box counting dimension decreased in low sand content samples as 

these contained the only empty boxes. Clay content was positively correlated with all 

negative q Dqs (rho ranging from 0.59 to 0.63) and negatively correlated with both D0 

and D1 (-0.61 and -0.36, respectively). Silt content was negatively correlated with D0, 

D1, D2, D3 and D4 (rho = -0.40, -0.40, -0.34, -0.29 and -0.26, respectively). Note that 

while all these correlations were below the Bonferroni-corrected level for significance, 

many had a rho of less than 0.5 and were thus excluded from Figure 3.  

There was no significant difference by habitat for D0, D1, D2, D1/D0 or D2/D1 (ANOVA 

on 6, 323 d.f. p = 0.039, p = 0.22, p = 0.98, p = 0.84 and p = 0.97, respectively. 

Significance assessed as p < 0.01. Appendix E Figure 2). The change in D0 with habitat 

was on the margin of being significant and it may be that woodland habitats have 

higher D0 values. A higher value of this box-counting dimension indicates that these 

habitats have soil particle size distributions with few missing values. In our dataset 

this most likely means there are fewer woodlands on clayey or silty soils, as across the 

entire dataset the only missing values for texture occurred in the coarse sand fraction. 

There was no clear pattern of change in the Dq ~ q spectra by habitat (Appendix E 

Figure 3). 

 

3.3.3 Relationship between textural heterogeneity and microbial diversity 

We found no relationship between microbial alpha diversity and soil textural 

heterogeneity (D1) when no other parameters were taken into account. Overall, there 

was no significant correlation between bacterial or fungal richness and textural 
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multifractal parameters (Figure 3.4, Appendix E Figure 3). The Spearman’s rank 

correlations between fungal richness and D0, D1, and D2 were -0.068, -0.046, and -

0.024, respectively while for bacteria, they were 0.007, 0.064 and 0.084, respectively.  

 

Figure 3.4. Change in bacterial and fungal richness with soil texture multifractal parameters (D0, D1 and D2). 

Structural equation modelling revealed a direct effect of textural heterogeneity upon 

bacterial diversity once changes in soil chemistry were accounted for (Figure 3.5). 

Adding median grain size as a measurement of the difference between clay-rich and 

sandy soils did not improve model fit and the model with median grain size instead of 

textural heterogeneity performed considerably worse (ΔAIC > 900 and >2000 

respectively). Bacterial OTU richness increased with textural heterogeneity 

(represented by D1), while fungal OTU richness did not. The direct impact of texture 

on bacterial diversity was low compared to soil pH and land use intensity but 

comparable to that of total soil carbon (full model output in Appendix E Table 2). 

Within structural equation modelling we can estimate the indirect effects of variables 

as well as the direct path coefficient (Appendix E Figure 4). For example, the indirect 

effect of pH on fungi in our SEM can be calculated by multiplying together the 

standardised impact of pH upon bacteria and the standardised impact of bacteria 
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upon fungi. We found that the positive impact of soil textural heterogeneity upon 

bacterial diversity is partially counteracted by changes in soil chemistry associated 

with the different soil textures (Appendix E Figure 4); consistent with the lack of 

significant correlation seen in Figure 3.4. We also found that while we identified few 

direct drivers of fungal richness the indirect effects of many of the soil 

physicochemical and climatic effects mirrored the response of bacteria richness due to 

the strong link between bacterial and fungal richness (Appendix E Figure 4). 

 

Figure 3.5. Structural equation model showing the significant impact of textural heterogeneity on bacterial 

diversity after controlling for land use, soil carbon and pH (n=310). Positive links are represented by blue 

lines, negative by red lines. Insignificant links (at p > 0.05) are not shown. R squared values for 

endogenous variables are shown in the corner of each box. Model fit was good: robust χ2 = 2.117 on 7 

df, p = 0.95 (scaling correction factor = 6.91). A full model output is presented in Supplementary Table 

S2.  

 

3.3.4 Relationship between microbial and textural composition 

Bacterial and fungal composition both showed significant correlation with the texture 

data, however the correlation between bacteria and texture was greater than the 

correlation between fungi and texture (correlation in a symmetric Procrustes rotation 

0.30 compared to 0.18). Microbial composition was more related to the texture 

composition as represented by particle size bins than to the textural heterogeneity as 

represented by the multifractal parameters (Appendix E Figures 5 and 6). Both the 

bacterial and fungal NMDS ordinations were significantly affected by nine aggregated 
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texture size particle bins; particularly the clay and silt sized particles (Appendix E 

Tables 3 and 4). The impact of D1 and D2 was nonsignificant, and D0 explained only 2-

3% of the variation in the data. The proportion of variance explained by the texture 

data was higher for bacteria with the medium and coarse clay sized particles 

explaining ~24% of the variation as opposed to fungi where they explained ~16% of the 

variation. pH and organic carbon were the strongest predictors of both bacterial and 

fungal composition, with pH explaining 70 and 60% of variation respectively and 

carbon explaining 40 and 30%. The impact of the textural composition was 

orthogonal to the pH-carbon primary axis of variation for fungi and to a lesser extent 

bacteria. 

Co-occurrence analyses were used to identify specific taxa that were more likely to 

occur in soils that had larger proportions of any given particle size range. OTUs that 

appeared in at least 50% of sites for bacteria and 25% of site for fungi were used in 

calculating spearman rank correlations with particle size bins, in total 4279 bacterial 

OTUs and 175 fungal OTUs were used. Of these 1106 bacterial OTUs were significantly 

positively correlated with at least one particle size bin, and 53 fungal OTUs. These 

correlations were mainly with the clay sized particles (above 0.12 µm diameter), with a 

limited number of correlations with fine to medium silt sized particles and no 

correlations with sand sized particles (Figure 3.6). The classes of fungi that were 

correlated with particle size fractions appear to be a proportional subset of the overall 

common fungal class composition (Appendix E Figure 7a). However the phyla of 

bacteria that were correlated with particle size fractions are relatively low in 

Proteobacteria and high in other phyla such as the Chloroflexi compared to the overall 

composition of the common bacterial taxa (Appendix E Figure 7b). 
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Figure 3.6. The network of spearman rank correlations between particle size bins and bacterial (panel a) and 

fungal (panel b) OTUs. Only correlations directly between a particle size bin and a microbial OTU are 

shown for graphical simplicity. The particle size bins are coloured as in Figure 3.3. 

 

3.4 Discussion 

3.4.1 Soil texture 

The network of soil particle size classes revealed that the abundance of different sand-

sized particle fractions correlate well with each other. However despite there being 

three clusters of nodes overall, there was no clear silt-sized or clay-sized cluster. 

Instead, the very fine clay-sized particles clustered with the silt and sand-sized 

particles. This may have been due to the strong negative relationship between the fine 

sized clay particles and larger sized clay particles which was unexpected. Due to the 

patented nature of the laser granulometry equipment it is very difficult to ascertain 

whether it is related to the transition from the PIDS detector to particle size 

distribution. However, if this is a true description of Welsh soils it could indicate that 

soils with a greater proportion of coarse fractions have more nanoscale particles than 

clayey soils. This has implications for the increasing issues surrounding nano-scale 

pollutants as it may mean silty and sandy soils are more prone to retaining nano-scale 
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particles without binding them to the soil matrix than clayey soils which are known to 

bind to certain nano-pollutants (Tourinho et al., 2012).  

Our finding that the single fractal model was inappropriate for our data was consistent 

with previous work showing that the single fractal model failed to work for samples 

with greater than 10% clay (Posadas et al., 2001). The positive correlation of coarse 

particles with D0 was consistent with previous results from Yu et al. (2015) but 

inconsistent with Millán et al. (2003). The negative correlation between clay sized 

particles and D0 and D1 was inconsistent with some previous literature which has 

found a positive correlation (Millán et al., 2003; Wang, D. et al., 2008; Yu et al., 2015). 

Liu et al. (2009) reported a positive correlation between fine sized particles and 

particle heterogeneity but did not distinguish between clay and silt-sized particles. 

Our result is consistent with results from Miranda et al. (2006) and Posadas et al. 

(2001) who had similar loam type soils to our study, indicating that the relationship 

between multifractal parameters and soil texture classes is highly dependent on soil 

textural class.  

There was no impact of habitat upon the multifractal parameters of soil texture 

indicating that the texture of the soil is unaltered by the plant community and 

common local management practices. This is contrary to previous results from the 

literature (Qi et al., 2018; Wang et al., 2008; Yu et al., 2015). Wang et al. (2008) 

interpreted their results as relating to the impact of vegetation upon soil erosion, with 

decreasing canopy cover leading to increased soil erosion and decreasing soil particle 

size heterogeneity. In a temperate oceanic climate more similar to our study area, soil 

textural heterogeneity has been found to be higher in grasslands and vineyards, which 

was suggested to be due to ploughing mixing weathered with less weathered soils 

(Rodríguez-Lado & Lado, 2017). While the above results are often interpreted as land 

use causing changes in soil texture, there is also the possibility that certain soils are 

preferentially chosen for certain land uses, e.g. more heterogeneously textured soils 

may be used more frequently for vineyards. The soils in our study area are less prone 

to erosion so this could reduce the impact of habitat upon soil texture (Borrelli et al., 

2017). Low intensity management within our study area could also be reducing the 

impact of habitat, as only a small number of sites are within arable cropping systems. 
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Any relationship between soil texture and habitat is dependent on the intensity of 

land use and the relative rates of soil erosion and disturbance. 

 

3.4.2 Soil texture and biodiversity 

We have found the first evidence for a positive relationship between soil textural 

heterogeneity and bacterial diversity. Textural heterogeneity performed better than 

median grain size at predicting microbial diversity indicating that in our range of soil 

textures the variety of soil particle size fractions is more important to microbial 

diversity than the size of the dominating particle size fractions. Multiple studies have 

found evidence of a relationship between soil texture and microbial communities, 

however, the nature, strength and direction of this relationship differs by study. Some 

experimental results indicate that texture is the most important driver of microbial 

community structure. For instance, one mesocosm experiment showed a greater 

impact on microbial community structure from particle size distribution manipulation 

than from pH alteration or compaction (Sleutel et al., 2012). Previous work has found 

a positive link between microbial biomass and soil textural heterogeneity as described 

by a single fractal model (Hu et al., 2014). However, most field surveys have found a 

significant but lesser impact of texture upon microbial communities, in part due to the 

strong influence of pH on microbial diversity in natural ecosystems (Griffiths et al., 

2011; Tecon & Or, 2017). More nuanced impacts of texture upon microbial diversity 

have been found across landscape types, across agricultural (Constancias et al., 2015; 

Naveed et al., 2016), grassland (Hu et al., 2014; Yao et al., 2018), forest (Chau et al., 

2011), and arid sand (Pasternak et al., 2013). The absence of a consistent relationship 

between soil particle size heterogeneity and texture size classes may mean these 

apparently inconsistent results are still driven by the positive relationship between 

bacterial diversity and soil particle size heterogeneity. Of particular note is that our 

results show that just examining the clay to sand transition through incorporating 

median grain size provides less predictive information than the use of textural 

heterogeneity.  
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Our results also revealed that changes in microbial composition were affected more by 

changes in particle size composition rather than textural heterogeneity. This is 

consistent with our hypothesis that different microbes show preference for different 

particle size bins, as evidenced in previous studies (Hemkemeyer et al., 2018; Poll et 

al., 2003). We found that clay and silt particle size bins were more important for 

microbial taxa than sand particles, similar to the results of Poll et al. (2003). The lack 

of a demonstrable link between microbial diversity and sand particles could be due to 

the low nutrient content of quartz sand relative to clay and silt sized particles. 

Microbial diversity associations with the clay fraction are also consistent with previous 

results that clay content has been found to be significantly positively related to 

bacterial diversity at field, regional and national scales in Europe (Constancias et al., 

2015; Dequiedt et al., 2011; Naveed et al., 2016). However, a study in forested 

landscapes in the USA found a positive relationship between sand content and 

bacterial richness (Chau et al., 2011). There are also other studies which have found 

that sand sized particles are important for certain microbial taxa (Gardner et al., 2012; 

Hemkemeyer et al., 2018). These inconsistent results may be driven by the different 

mineral composition of soil particle size fractions in different regions, which is known 

to impact microbial association with particles (Nishiyama et al., 2012; Roberts, 2004). 

The present work attempts to focus on the aspect of soil structure represented by the 

particle size distribution. There has been much research on the influence of aggregate 

type upon microbial communities (Gupta & Germida, 2015). It is clear that microbial 

communities are both influenced by the presence and structure of soil aggregates and 

promote their formation (Tecon & Or, 2017; Totsche et al., 2010). Our results are 

concerned with a more fundamental, relatively unchanging, aspect of soil structure 

than aggregation. Therefore, regardless of biological activity and typical management 

actions there will always be a physical control from the soil structure upon the 

biophysical interactions that can occur. 

The differential response of bacteria and fungi to soil texture is consistent with 

previous evidence and the different life history strategies of different microbial groups. 

Previous evidence has shown that clay content is related to bacterial diversity but not 

fungal diversity (Naveed et al., 2016). Soil textural heterogeneity provides a diversity of 
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niche space and increased physical separation of communities promoting speciation 

within microbial communities. Low pore connectivity, as changed by both altering soil 

texture and lowering water potential, has been found to increase bacterial diversity in 

soil (Carson et al., 2010). In some respects bacteria are more constrained by their 

physical environment than fungi, limited to water-filled pore spaces and with low 

capacity for targeted movement (Yang & van Elsas, 2018). Bacteria dominate the 

microbial community within the smallest pores due to their smaller size and the lack 

of migration between these pores, particularly under drier conditions, that could lead 

to increasing segregation of bacterial communities and the maintenance of high 

diversity. Fungi are capable of moving through dry pore space and less likely to 

become restricted to specific soil microenvironments as they can transfer resources 

through the hyphal network to compensate for changes in the local environment 

(Tecon & Or, 2017; Whiteside et al., 2019). In combination with our results this 

suggests that soil texture is less of a constraint on fungal activities and diversities. Both 

bacteria and fungi show some changing of communities by particle size fraction which 

would seem to indicate that preference for particle size is not driving the difference 

between bacteria and fungi (Chiu et al., 2006; Neumann et al., 2013). However, it is 

possible that the changing fungal communities with particle size is largely dependent 

on autocorrelated bacterial community changes.  

Despite the different direct responses to physicochemical properties, the strong 

positive link between bacteria and fungi means they appear to respond similarly to 

external gradients. The ability of the model to describe fungal diversity is limited, 

which may be due to the lack of inclusion of plant data which are known to be 

important in fungal community processes. Alternatively the choice of ITS1 for fungal 

community description could be impacting our results, as the DNA metabarcoding 

region is known to impact the variety of fungi identified (Blaalid et al., 2013; George, 

Creer, et al., 2019). The strong relationship between bacteria and fungi offers a 

cautionary note in interpreting results from organismal groups separately, as the 

different taxonomic levels interact to such a degree as to make measuring responses to 

abiotic properties without the confounding biological variables misleading. 

Establishing the nature of the relationships between biological communities and then 
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how they respond to external factors is essential in order to fully characterise the soil 

ecosystem. 

 

3.5 Conclusions 

We analysed a broad range of temperate habitats for their soil particle size 

distribution and microbial community characterisation. For the first time we show 

that soil textural heterogeneity is positively linked to bacterial richness. Conversely, 

we found that fungal richness was not directly impacted by soil texture but that there 

is an indirect effect of texture mediated through the bacterial community. Both 

bacterial and fungal community composition is impacted by the textural composition 

of the soil, with certain microbial taxa co-occurring with clay and fine-silt sized 

particles. Our research shows how different physicochemical factors directly drive 

community assembly processes in different microbial groups. However, despite these 

differences in biophysical driving factors likely ecological interactions can cause 

disparate microbial groups to respond similarly to environmental gradients. 
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Abstract 

A warming climate and expected changes in average and extreme rainfall emphasise 

the importance of understanding how the land surface routes and stores surface water. 

The availability and movement of water within an ecosystem is a fundamental control 

on biological and geophysical activity, and influences many climatic feedbacks. A key 

phenomenon influencing water infiltration into the land surface is soil 

hydrophobicity, or water repellency. Despite repellency dictating the speed, volume 

and pattern of water infiltration, there is still major uncertainty over whether this 

critical hydrological process is biologically or physicochemically controlled. Here we 

show that soil water repellency is likely driven by changes in the plant and soil 

microbial communities in response to environmental stressors. We carried out a field 

survey in the summers of 2013 to 2016 in a variety of temperate habitats ranging 

across arable, grassland, forest and bog sites. We found that moderate to extreme 

repellency occurs in 68% of soils at a national scale in temperate ecosystems, with 

92% showing some repellency. Taking a systems approach, we show that a wetter 

climate and low nutrient availability alter plant, bacterial and fungal community 

structure, which in turn are associated with increased soil water repellency across a 

large-scale gradient of soil, vegetation and land-use. The stress tolerance of the plant 

community and associated changes in soil microbial communities were more closely 

linked to changes in repellency than soil physicochemical properties. Our results 

indicate that there are consistent responses to diverse ecosystem stresses that will 

impact plant and microbial community composition, soil properties, and hydrological 

behaviour. We suggest that the ability of a biological community to induce such 

hydrological responses will influence the resilience of the whole ecosystem to 

environmental stress. This highlights the crucial role of above-belowground 

interactions in mediating climatic feedbacks and dictating ecosystem health.  
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4.1. Introduction 

The frequency and intensity of extreme climatic events is predicted to increase over 

the next century and beyond (IPCC, 2014). Soil moisture has been shown to have 

major implications for carbon storage and related climatic feedbacks (Green et al., 

2019), therefore it is more important than ever to understand how the flow of water 

interacts with ecosystem health and the mechanisms controlling water fluxes at the 

land-atmosphere interface. There are still many uncertainties surrounding how water, 

soil, and vegetation will respond to the escalation of climatic stress in addition to 

prevailing land use stresses. Resilience to change varies between ecosystems, yet in 

most cases resilience and recovery only occur within limits and are less likely under 

multiple stressors (Côté, Darling, & Brown, 2016). Biological communities shift in 

response to stress, and soil physicochemical properties change in tandem, creating an 

overall ecosystem response (van der Putten et al., 2013). Further, the ecosystem 

response to one stressor, such as drought, may change the response to another, such 

as flood. Many habitat stressor responses and feedbacks are as yet unknown but are 

globally important if we are to model and predict impacts helping to mitigate 

ecosystem damage (Robinson et al., 2019). 

Soil water repellency fundamentally changes the way water infiltrates and moves 

through the soil. A water repellent (hydrophobic) soil is defined by the behaviour of 

liquid on the soil surface, with repellent soils causing water drops to bead and resist 

capillary absorption. Previous seminal work on water repellency has emphasised its 

impact on hydrological processes through increasing surface runoff and soil 

erodibility, predominantly in fire driven systems (Doerr, Shakesby, & Walsh, 2000; 

Goebel et al., 2011). To date, it is often negative impacts of repellency associated with 

crop production, flood risk, water quality and biogeochemical cycling that have been 

the focus of the literature (Dekker & Ritsema, 1994; Doerr et al., 2000). However, an 

emerging body of work provides evidence for the ecological role of repellency in 

promoting the resilience of plant communities and soil carbon stock to wildfire and 

drought stress in various ecosystems (Kettridge et al., 2014; Robinson et al., 2010; 

Zeppenfeld et al., 2017). Water repellency has been shown to induce unsaturated 

preferential flow of water into the soil rather than piston flow in many soils (Dekker & 
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Ritsema, 1994; Rye & Smettem, 2017). Of the 17 ecosystem service categories identified 

by Costanza et al. (1997), twelve benefit from preferential flow and three are affected 

detrimentally (Clothier, Green, & Deurer, 2008). 

Water repellency induces increased runoff if the soil has no macropores and 

unsaturated preferential flow of water into the soil, rather than piston flow, in the 

presence of macropores (Dekker & Ritsema, 1994). The partitioning between 

preferential flow and surface run-off will depend on a number of factors in addition to 

the degree of repellency, e.g. texture, macropore density the topography of the area 

and the spatial pattern of repellency, which is often highly spatially heterogeneous 

(Bodí et al., 2013; Doerr et al., 2000). With preferential flow, water penetrates deeper 

into the soil profile by following roots or other macropores generating fingered flow, 

while with piston flow it penetrates evenly down the soil profile (Bogner et al., 2010). 

In an ecosystem where the spatial pattern of plants can adjust to the heterogeneity of 

infiltration due to repellency, preferential flow can be an advantage. For example, 

preferential flow can result in greater storage of water at depth (Rye & Smettem, 2018) 

which can increase a plant’s resilience to drought stress and give an advantage to 

deep-rooting plants over shallow-rooting plants in drought stressed environments (De 

Boeck & Verbeeck, 2011; Zeppenfeld et al., 2017). Whereas, in agricultural production 

systems where the pattern of plants is predetermined and there are limited 

macropores for the development of preferential flow paths soil moisture spatial 

heterogeneity and dry spots results in yield loss.  

Water repellency is considered to be created by the amount, nature and configuration 

of soil organic material (Doerr et al., 2000; Mao et al., 2019), yet there is still 

uncertainty over the origins of the hydrophobic compounds in global soils (Mao et al., 

2016; Schaumann et al., 2007; Spohn & Rillig, 2012). Until now, potential mechanisms 

for inducing water repellency have not been tested at realistic scales, hampering the 

emergence of a coherent theory across habitat types for the development and 

persistence of water repellency. In this work we analysed soil repellency across a wide 

range of habitats (Figure 4.1) within a temperate oceanic climate. This wide range of 

biota within a limited climatic range enabled us to evaluate the relative role of biotic 

influence on repellency versus soil physicochemical influences, without confounding 



 

112 

 

effects of climate. We characterised the plant community and soil physicochemical 

properties within 1326 sites, including 425 sites in which the belowground 

communities were measured, allowing an in-depth look at how the whole ecosystem 

shifts in tandem with soil hydrological shifts. Given the emerging evidence discussed 

we hypothesise that:  

1) Soil water repellency depends on habitat, particularly showing greater 

persistence in those habitats that experience environmental stress such as 

drought and high acidity.  

2) Persistence of repellency depends on the microbial community composition, as 

microbes can adapt to water stress by either becoming repellent or producing 

repellent compounds to aid water conservation.  

We test these hypotheses through the following objectives: (i) measure repellency 

across habitat types and determine its prevalence; (ii) test the relationship between 

soil, plant and microbial communities and the persistence of soil repellency; and (iii) 

explore whether our pre-identified physicochemical and biological variables predict 

the changes in repellency across land use. 

4.2. Methods 

We used data collected as part of the Glastir Monitoring and Evaluation Programme 

(GMEP) field measurement program in Wales, a sampling domain of ~2,000,000 ha 

comprising varied land use and topography and situated on the oceanic Atlantic 

seaboard of NW Europe (Emmett & the GMEP team, 2017). There were 300 individual 

1 km squares randomly selected from within land classification strata and each 

included 5 vegetation plots (Figure 4.1, Appendix F Figure 1). The sites were selected to 

be representative of the range of habitat types across Wales; consequently, different 

grassland habitats were sampled extensively, complemented by substantial numbers of 

woodland and wetland sites (Appendix F Table 1). Sampling occurred over a five 

month period across each of the summers of 2013 to 2016, each square was only 

surveyed once over the four years with different squares being surveyed each year. 

Every plot had a vegetation survey performed for a 200 m2 square and where possible 

soil samples taken at the south corner of an inner 2m square (Appendix F Figure 1). A 
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soil core for physicochemical analysis was taken with a plastic corer of 5 cm diameter 

down to 15 cm depth. The squares from the first two years of the survey had soil 

samples for microbiology taken from three randomly selected plots within the square. 

Soil samples for microbiology were taken using a gouge auger at 5 points around the 

physicochemical soil core location down to 15 cm, and then bulking together the 

samples. The surveyors assigned each plot to a habitat according to the Joint Nature 

Conservation Committee criteria (Jackson, 2000). The main habitats included in this 

study were: arable; improved grassland; neutral grassland; acid grassland; broadleaved 

woodland; coniferous woodland; dwarf shrub heath; fen, marsh and swamp; bog; and 

bracken. 
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4.2.1 Field sampling design 

  

Figure 4.1: A map of the survey square locations and the range of habitats included in the survey. The white 

circles represent approximate survey square locations. The habitats shown are aggregated from the 

categories within the Land Cover Map 2015. These aggregated habitat classes were not obtained using 

the same methods as the field survey assignment so care must be taken in linking the results. 
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Elevation data was taken from NEXTmap based on the GPS coordinates of the plots. 

Precipitation is the Standardised Annual Average Rainfall for 1961-1990 calculated on a 

1 km grid. Drought is a measure of the annual average number of dry spell events, 

defined as 14 day events with less than 2 mm rainfall per day, over the previous 30 

years to sample collection and calculated on 5 km grid square basis. All precipitation 

and drought data came from the Met Office © Crown copyright 2017. The Land Cover 

Map 2015 was used to represent the range of habitats across Wales (Rowland et al., 

2017).  

 

4.2.2 Soil physicochemical laboratory analyses 

Analysis of soil variables was undertaken using the methods of the Countryside Survey 

(Emmett et al., 2008). Soil pH was measured by suspending 10 g of fresh soil in 0.01 M 

CaCl2 in a 1:2.5 (weight/volume) soil suspension (Avery & Bascomb, 1974). The pH 

used was measured in CaCl2 instead of deionised water as the CaCl2 solution has 

similar ionic strength to the soil solution in fertilised temperate soils and thus the pH 

is more representative of field conditions (Schofield & Taylor, 1955).  

The surface 2 cm of the air-dry core was removed intact for water repellency 

measurement using the water drop penetration time method on the soil surface 

(Doerr, 1998) in the laboratory between 50-60% relative humidity. Six 1 ml droplets of 

deionised water were dropped on top of the soil surface from a height of 1 cm using a 

pipette. The absorption of the water droplets was recorded using video recording 

equipment, enabling measurement of the WDPT at a precision of 1s. This surface 

section of the soil was recombined with the rest of the core for further processing. The 

complete soil samples had particles greater than 2 mm size removed and the 

remaining fine earth fraction ground by a deagglomerator (Pulverisette 8). Soil carbon 

of the fine earth fraction of the soil was measured by oxidative combustion followed 

by thermal conductivity detection using an Elementar Vario EL analyser. The soil 

water content was calculated as the volumetric percentage of the fine earth fraction of 

the soil, taking into account the volume of particles >2 mm removed. 
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4.2.3 Biological community data 

4.2.3.1 Plant community analysis 

Multiple indices of plant community properties were calculated, including both those 

based on Ellenberg indicator values (Hill, Preston, & Roy, 2004) and those based on 

Grime’s CSR theory. Grime’s CSR theory states that species can be categorised into 

competitors, stress tolerators and ruderals (Grime, 1977; Hodgson, Grime, Hunt, & 

Thompson, 1995). For these indices the score assigned to each plant species was taken 

and then a mean score per plot calculated based on species identity. Within this 

analysis we used Ellenberg fertility and Grime’s stress tolerance. 

4.2.3.2 Microbial community analysis 

DNA was extracted using a mechanical lysis and homogenisation in triplicate from 

0.25 g of soil per sample using PowerLyzer PowerSoil DNA Isolation Kits (MO-BIO) 

after pre-treatment with 750 l of 1 M CaCO3 (Sagova-Mareckova et al., 2008). 

Amplicon libraries were created using primers for the 16S (bacteria) and ITS1 (fungi) 

regions of the rRNA marker gene using a two-round PCR. The primer combinations 

used for the first round were 515F/806R (V4 16S) for 16S libraries (Caporaso et al., 

2011; Walters et al., 2011) and ITS5/5.8S_fungi (ITS1) for ITS1 libraries (Epp et al., 

2012). For a full description of the methods used see George et al. (2019). Amplicon 

libraries of 2013 samples were constructed at Bangor University. Library preparation 

for 2014 samples and Illumina sequencing for both years were conducted at the 

Liverpool Centre for Genome Research. Sequences with limited sample metadata have 

been uploaded to The European Nucleotide Archive with the following primary 

accession codes: PRJEB27883 (16S) and PRJEB28028 (ITS1). 

All bioinformatics were performed on the Supercomputing Wales system. Illumina 

adapters were trimmed from sequences using Cutadapt (Martin, 2011). The sequences 

were then de-multiplexed, filtered, quality-checked, and clustered using a 

combination of USEARCH v. 7.0 (Edgar, 2010) and VSEARCH v. 2.3.2 (Rognes, Flouri, 

Nichols, Quince, & Mahé, 2016) programmes. Sequences with a maximum error 

greater than 1 and > 200 basepairs were removed following the merging of forward 

and reverse reads for all sequences. Operational taxonomic units (OTUs) were 

clustered using open reference methodology as described in George et al., (2019). 



 

117 

 

Filtered sequences were matched first against either the GreenGenes v. 13_8 (DeSantis 

et al., 2006) or UNITE v. 7.2 (Kõljalg et al., 2013) databases. Ten per cent of sequences 

that failed to match were clustered de novo and used as a new reference database for 

failed sequences. Sequences that failed to match with the de novo database were 

subsequently clustered de novo. Chimeric sequences were removed. Taxonomy was 

assigned to OTUs using QIIME (Caporaso et al., 2010) with RDP methodology (Q. 

Wang, Garrity, Tiedje, & Cole, 2007) from the GreenGenes database v. 13_8 and 

UNITE database v. 7.2 for the 16S and ITS1 data, respectively. Singletons and OTUs 

appearing in only 1 sample were removed from OTU tables following taxonomic 

assignment. All non-bacterial and non-fungal OTUs were removed from each OTU 

table. 

To account for variation in read depth across samples, fungal data was rarefied to 1750 

reads and bacterial data was rarefied to 18800 reads using the vegan package 

(Oksanen et al., 2018; Weiss et al., 2017). Rarefaction was repeated 100 times for fungi 

and 50 times for bacteria and the rounded mean used for all analyses. Fungal OTUs 

were also assigned to trophic mode using FUNGuild (Nguyen et al., 2016). In total 

53.2% of the OTUs were assigned to a trophic mode, 82.9% of those assignations 

being rated probable or highly probable. The FUNGuild data was rarefied to 1500 read 

depth 100 times and the mean value across the repetitions used to calculate the 

proportions of OTUs identified to be solely pathotrophic, symbiotrophic or 

saprotrophic. Due to the low proportion of solely pathotrophic fungi within our 

samples only the symbiotrophic and saprotrophic proportions were used in the 

statistical analysis. 

4.2.4 Statistical analysis 

All statistical analysis was undertaken in R (R Core Team, 2018), and were performed 

on the natural logarithm of the median WDPT. The WDPT was categorised into the 

WDPT ratings of Doerr et al. (2006). Figure 4.2 was created using the ggplot2 package 

(Wickham, 2016). Non-metric multidimensional scaling of the OTUs was performed 

using the vegan package (Oksanen et al., 2018) using Sørensen community 

composition distances.  
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Structural equation modelling was used to evaluate the factors influencing water 

repellency in our dataset. This approach involves proposing a causative model, taking 

into account direct and indirect pathways, then fitting to the data and critically 

evaluating the proposed causative model. A set of climate, soil and plant variables 

were selected based on previous work constructing hypothesised relationships 

consistent with mechanisms that could drive repellency. These variables were built 

into a piecewise structural equation model (SEM) (Shipley, 2000) using Bayesian 

multilevel models (Bürkner, 2017; Clough, 2012), and evaluated using Shipley’s test of 

d-separation (Shipley, 2009, 2013). Further details on the SEM approach and 

parameter selection are contained within the supplementary information. 

4.3. Results 

4.3.1 Soil water repellency at the national scale 

Overall, we found that 92% of the soils showed at least slight water repellency with 

32% showing severe to extreme water repellency (Appendix F Table 1). We found that 

water repellency was strongly associated with soil carbon, water content and the 

composition of the plant and soil microbial communities at a site (Figure 4.2). Soil 

carbon had the largest impact upon water repellency in both the model across the full 

dataset (Figure 4.3b, Appendix F Table 2) and the model with microbial data (Figure 

4.2b, Appendix F Table 3).  
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Figure 4.2: Structural equation modelling reveals soil water repellency is strongly influenced by biological 

community composition. a The width of the arrow joining two boxes is proportional to the strength of 

the relationship, i.e. the parameter estimate. Positive relationships are represented by a blue arrow, 

negative by red and endogenous variables feature the proportion of variance within the variable 

explained by the model, the conditional R2 value, in the corner of the box. The model fitted the data well 

(C = 20.22, p = 0.68, n = 425) and all other SEMs tested had a ΔAICc score > 2. The full output from the 

model is in Appendix F Table 2. b The total, direct and indirect effect of each predictor on soil water 

repellency as estimated from the model parameters. 
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4.3.1 Biological influences on water repellency 

Plant stress tolerance strongly impacted water repellency, having a direct impact that 

was over 50% higher than the effects of soil pH, soil water or climatic variables across 

the entire dataset (Figure 4.3, Appendix F Table 2). Although precipitation and 

drought were negatively correlated, both significantly increased the Grime stress 

tolerance score of a site. The stress score as a representative of the plant community 

was responsive to multiple forms of climatic stress as well as pH stress. A stress 

tolerant plant community at a site was associated with more repellent soils. The stress 

tolerance of the plant community impacts repellency directly and indirectly through 

differences in the soil microbial communities.  

Both bacterial and fungal community composition explained significant residual 

variance in soil water repellency once changes in soil carbon, pH and water content 

were accounted for (p < 0.001), indicating a direct link between the soil microbial 

communities and water repellency. Soil water repellency decreased with increasing 

proportions of symbiotrophic fungi (Figure 4.2), the majority of which were 

ectomycorrhizal in this dataset (61%). Bacterial composition had a particularly high 

direct impact upon repellency (93% of the impact of soil carbon, the source of 

hydrophobic material; Figure 4.2b, Appendix F Table 3). 

4.3.3 Mediation of climate and pH stress 

Within our model the impacts of environmental stressors on repellency were 

completely mediated by changes in the biological communities at a site. Within the 

model without microbial data there are direct links between precipitation, drought 

and repellency (Figure 4.3) however these were not present in the model with 

microbial data (Figure 4.2). Water repellency does increase considerably with 

elevation, and alters with changing rainfall regime, yet this was entirely mediated by 

changes in soil properties and the biological community (Figure 4.2b). We also found 

no further association between soil pH and water repellency once changes in the soil 

bacterial community composition were accounted for.  
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Figure 4.3: Structural equation modelling reveals the drivers of soil water repellency across the entire dataset. a 

The width of the arrow joining two boxes is proportional to the strength of the relationship, i.e. the 

parameter estimate. Positive relationships are represented by a blue arrow, negative by red and 

endogenous variables feature the proportion of variance within the variable explained by the model, the 

conditional R2 value, in the corner of the box. The model fitted the data well (C=8.40, p=0.40, n=1326), 

and all other SEMs tested had ΔAICc > 2. The full output from the model is in Appendix F Table 3. b The 

total, direct and indirect effect of each predictor on soil water repellency is depicted as estimated from 

the model parameters. 

 

4.3.4 Influence of land use on soil water repellency 

Repellency varied across the different habitat types in our study, with higher 

repellency in low productivity habitats such as acid grassland and bog compared to 
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high productivity habitats such as improved grassland. Repellency was highly variable 

within most habitat types, particularly in broadleaved woodlands and fens (Figure 

4.4). Arable systems had significantly lower water repellency than all other habitat 

types (Figure 4.4, Appendix F Table 1).  The low water repellency of arable systems 

persisted after accounting for their higher pH and lower soil carbon content (ANOVA 

on impact of habitat on residuals for whole dataset: F9, 1295 = 7.394; p < 0.0001; 

Appendix F Table 4) and different microbial communities (ANOVA on impact of 

habitat on residuals: F2, 380=2.458; p = 0.01; Appendix F Table 5). Arable habitats were 

the only habitats that were still different from other habitats after accounting for soil 

physicochemical and biotic variables (Appendix F Table 5). 

 

Figure 4.4: Arable systems show lower water repellency than all other habitat types. Water repellency increases 

with decreasing fertility of grassland (improved to neutral to acid grassland). The non-overlap of notches 

indicates that their medians are approximately significantly different at a 95% confidence level. Other 

habitats had lower sample sizes, overlapping notches and it is more difficult to draw strong conclusions.  
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4.4. Discussion 

4.4.1 Biological influences on soil water repellency 

We found that repellency is higher in ecosystems with greater soil carbon, higher 

plant stress tolerance and associated changes in soil pH and microbial communities 

(Figure 4.5). The strong influence of soil carbon on water repellency is consistent with 

previous work (Hermansen et al., 2019; Mao et al., 2019; Wang et al., 2016), but the 

association between plant community stress tolerance, microbial composition and 

repellency is novel. Our results provide evidence supporting literature conjecture that 

the ability to induce water repellency could confer a competitive advantage to plants 

within stressful environments (Robinson et al., 2010; Verboom & Pate, 2006). 

Multiple types of environmental stressors, including both climatic and acidity related 

stressors, have been found to be related to repellency. Surface water repellency can 

divert water deeper into the soil profile through inducing preferential flow of water 

and preventing water movement upwards by creating a evaporative barrier layer at the 

soil surface providing dual protection from evaporation (Doerr et al., 2006; Rye & 

Smettem, 2017). In semi-arid ecosystems the pattern of soil moisture in relation to 

trees suggests that the trees respond to drought by inducing water repellency to 

promote water flux down their root systems into deeper soil layers (Robinson et al., 

2010; Verboom & Pate, 2006). Rhizosphere hydrophobicity has been found in 

modelling exercises to give a competitive advantage for plant growth due to greater 

acquisition of water and mitigating the impacts of drought stress (Kroener et al., 2016; 

Zeppenfeld et al., 2017).  
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Figure 4.5: A representation of the change in repellency across an environmental stress gradient and its impact 

upon water fluxes in the soil when dry. Upon the left of the diagram we have a plant community that is 

adapted to be competitive in low-stress environments, highly productive with a non-repellent soil. Water 

infiltrates the soil in a piston flow manner. On the right we have a stress tolerant plant community with 

a repellent soil that alters water infiltration to follow preferential flow paths. This results in greater 

water next to plant roots and stored at depth within the soil. 

 

We know from different parts of the literature that plant exudates (Svenningsson, 

Sundin, & Liljenberg, 1990), fungal mats (Spohn & Rillig, 2012), and bacterial 
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communities (Achtenhagen et al., 2015) can all respond to stress by producing water 

repellent compounds. For the microbial community the production of water repellent 

compounds can be an important survival mechanism both in dry and saturated 

systems. For example, Unestam (1991) argued that the lipoid, hydrophobic fungal 

surface protected both the fungus and tree roots against desiccation during drought 

periods. Furthermore, he observed that the mycorrhizal roots withstood a drier soil 

environment in rhizoscopes than did the hydrophilic non-mycorrhizal roots. Another 

advantage is that hydrophobic mycorrhizal hyphae may translocate water more 

efficiently, being less susceptible to water loss (Duddridge, Malibari, & Read, 1980; 

Read, Francis, & Finlay, 1985). In saturated conditions, Unestam (1991) argued that the 

fungal mats, particularly the complex hydrophobic structures, such as the mantle, 

cords, and patches, could produce air pockets. As obligate aerobes, saturation for 

extended periods would cause death, so the air pockets could provide a lifeline.  

Bacteria have been found to produce extremely water repellent biofilms (Epstein et al., 

2011). One aspect of this repellency is that it prevents the penetration of 

antimicrobials into the biofilm. This has been exploited in crop protection where the 

biofilm development can shield roots from waterborne pathogens. Moreover, it has 

been argued that both hydrophobic bacterial cell walls and bacterial biofilms protect 

bacteria from desiccation or bursting in response to cycles of drying and rapid 

rewetting (Achtenhagen et al., 2015). Water stress was shown to activate a number of 

processes in microorganisms, (Morales, Parlange, & Steenhuis, 2010; Schimel, Balser, 

& Wallenstein, 2007). Hence our proposal that the development of water repellency is 

an ecosystem response to a stressful environment, as a means of protection for 

microbes and better resource allocation with plants. Our results, covering climatic 

stress, soil physicochemical properties, plant and soil microbial communities together, 

support the development of such an ecological theory.  

4.4.2 Persistence of repellency 

Microbial communities are quicker to respond to change than plants and our results 

indicate that repellency could be induced by microbes on short timescales in response 

to environmental stressors. There is still much uncertainty over the persistence of 

repellency over time and space (Bodí et al., 2013; Leighton-Boyce et al., 2007; K. 
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Müller et al., 2014; Rye & Smettem, 2015). Our study analysed the air-dry repellency of 

the soil, which can be interpreted as the ability of the sample to become repellent 

upon drying and thus would be less variable over time than repellency of the fresh soil 

surface. The different ways in which repellency is created and maintained may be a 

critical factor in determining how long repellency will persist. Some studies have 

found that hydrophobicity can originate from plant material, both litter and root 

exudates, which clearly indicates a potential for long term maintenance of repellency 

by plants (Cesarano, Incerti, & Bonanomi, 2016; Hallett et al., 2009; Mao et al., 2016; 

Naveed et al., 2018). Microbial communities are more changeable than plants yet 

could still result in the long term ability to induce repellency. Microbes both create 

and destroy repellent compounds, and changes in the composition of the community 

help determine water repellency.  

4.4.3 Evaluating the directionality of links and mediation in SEM 

Within our analysis we assumed that soil repellency was caused by changes in the 

microbial community, rather than the reverse. We consider that repellency is caused 

by hydrophobic compounds within the soil (Hermansen et al., 2019; Mainwaring et al., 

2013; Mao et al., 2019), however, it is feasible that the physical configuration of soil 

components could play some role, which remains largely unexplored (Benard et al., 

2018). It is these hydrophobic factors that we consider to be altered by biotic 

communities. It is possible that the hydrophobic compounds within the soil could be 

altering the microbial communities through changing the suitability of the 

environment (Barnard, Osborne, & Firestone, 2013; Or et al., 2007; Wang & Or, 2013). 

However microbial communities are both the source of, and mediator of, the 

breakdown of hydrophobic compounds (Achtenhagen et al., 2015; Chau et al., 2012; Li 

et al., 2018; Schaumann et al., 2007). There is likely a feedback mechanism whereby, 

as the physical environment is altered by the production or degradation of 

hydrophobic compounds, this then forces changes in microbial communities which 

are adapted to different situations. We believe that the shorter feedback is in the 

direction of microbes to repellency, and it is this we have included in our model.  

We have found complete mediation of climatic and some physicochemical stressors 

on repellency. Thus once we know the biotic community composition we do not need 
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to know the wider environmental conditions to be able to predict repellency. In 

particular, the complete mediation of pH related influences on repellency by the 

microbial community is of interest. This suggests that the change in water repellency 

with pH found in many observational studies (Lebron et al., 2012; Mirbabaei et al., 

2013; Zavala et al., 2014) is not likely to be due to chemical modification of particles, 

which has been found to alter water repellency in pH modification experiments 

(Amer, Schaumann, & Diehl, 2017; Diehl, 2013). The complete mediation of climatic 

stressors upon repellency suggests that the influence of climate on soil surface water 

content will be strongly impacted by the biological community at a site, with 

implications for earth system modelling (Goebel et al., 2011; Green et al., 2019). The 

infiltration of water into the soil in these systems is driven by biological factors, not 

physicochemical, and will therefore change as biological communities are placed 

under increasing stress.  

4.4.4 Influence of land use on soil water repellency 

The differing land uses within our study had differing repellency, however the impact 

of land use on repellency was in most cases explained by the variation in carbon, pH 

and biotic communities across the land use types. This supports the findings of Doerr 

et al. (2006), who also found a land cover dependency for soil water repellency in the 

United Kingdom. Repellency is known to have a strong role in the function of some 

land use types. For example, within some peatland systems extreme water repellency 

was created after fire, which lowered evaporation, allowed the maintenance of a high 

water table, and increased speed of ecosystem recovery compared to systems that did 

not become repellent after fire (Kettridge et al., 2014). With regard to stress it has 

been found that, in pasture systems a negative relationship between productivity and 

repellency has been found (Müller et al., 2014). This suggests that the competitive 

advantage found by the aforementioned modelling studies (Kroener et al., 2016; 

Zeppenfeld et al., 2017) are limited to locations that are undergoing stress and are 

potentially therefore less productive. Our results are consistent with this as stress 

resilient plant species are found in less productive sites.  

There is however one habitat in which knowing the carbon, water and biotic 

community does not mean that you can predict repellency: arable. Arable systems 
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have lower than predicted repellency even after taking into account soil 

physicochemical, above and belowground community composition. There is 

something qualitatively different about arable systems which results in lower 

repellency, perhaps due to the mechanical disturbance of the soil through tillage, 

which has been found to reduce water repellency and infiltration (Müller et al., 2016; 

Roper et al., 2013). Water repellency is likely to be related to soil biophysical structure, 

the networks of roots, fungal hyphae and microbial biofilms that permeate the soil and 

follow, create and maintain preferential flow paths for water infiltration. 

4.4.5 Water repellency and biological community response to stress 

The concept of water repellency as an adaptive stress response suggests that the ability 

to induce water repellency promotes ecosystem resilience to drought and other 

stressors. Access to water stores has been shown to be crucial in determining carbon 

loss and plant resilience during drought (De Boeck & Verbeeck, 2011). We propose 

that water repellency indicates a healthy ecosystem response to stress, and the 

inability of tilled land to induce water repellency can be interpreted as an unhealthy 

lack of resilience. We have found that multiple different natural stressors: drought; 

high precipitation and low nutrient status acidic soils had a consistent relationship 

with our realistic large-scale gradient of soil water repellency. It is the biological 

communities which are more closely related to soil repellency than physicochemical 

factors, showing the importance of ecology in modifying hydrological processes 

through feedbacks that will help conserve water. The homogeneity of response 

indicates there are consistent mechanisms induced by biological communities across 

ecosystem types to increase resilience. These mechanisms are those we should be 

interested in monitoring and influencing to understand, predict and mitigate 

ecosystem shifts in response to increasing stress from land use and climate change. 
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Abstract 

Understanding the diversity and composition of ecological communities is a key 

component in predicting future biodiversity responses to environmental change and 

implications for ecosystem health. Linking across the domains of life and trophic 

levels is essential for understanding whole-ecosystem dynamics but is often difficult 

and limited in scope. Here we analyse data from an extensive biodiversity dataset 

gathered across a variety of oceanic temperate habitats comprising 300 sites with co-

located soil microbial, plant, bird and pollinator surveys along with climate and soil 

physicochemical information. Soil microbial groups are analysed using Illumina 

sequencing of the 16S, ITS1 and 18S DNA regions, allowing in depth characterisation of 

microbial community composition and diversity. Using Bayesian hierarchical 

regression models, we show that a positive correlation between plant diversity and soil 

bacterial and fungal diversity is actually driven by changes in soil pH. However, 

positive associations between plant diversity and bird, bee and butterfly diversity 

persisted after accounting for changes in climate. The composition of soil bacteria, 

fungi, bees, butterflies and birds are all impacted by the plant community in 

conjunction with edaphic factors. The heterotrophic protistan community strongly 

tracks the bacterial community in both diversity and composition. Co-occurrence 

relationships were identified across the different microbial domains by sparse 

conditional network analysis, resulting in habitat specific clusters of taxa. The residual 

species associations after accounting for climatic and spatial variation in a hierarchical 

Bayesian joint species distribution model also revealed cross-domain correlations that 

largely structured into two clusters of low and high fertility species respectively. Taken 

together these results indicate the importance of cross-domain interactions in 

structuring local ecological communities and caution against the concept of a domain 

specific response to environmental stressors. Overall, our results comprehensively 

show the differential responses, linkages and divergences of diversity and composition 

in aboveground-belowground ecological communities to environmental and biotic 

properties.  
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5.1 Introduction 

The biodiversity of our planet is valuable in both its own right and in the provision of 

ecosystem resilience, functions and services (IPBES, 2019). Biodiversity is under 

increasing threat but monitoring change is often challenging, particularly for certain 

taxonomic groups and habitats. To address these difficulties many authors have 

attempted to evaluate whether certain taxa can act as indicators of other more difficult 

to survey taxa (e.g. Ceballos & Ehrlich, 2006; Landeiro et al., 2012; Prober et al., 2015; 

Wolters et al., 2006). There is a theory that diversity of certain groups can lead to 

increased diversity of other groups; for example, a more diverse plant community can 

support a more diverse pollinator community through a proliferation and utilisation of 

different ecological niches. The generation of biodiversity by biodiversity is somewhat 

supported by the presence of hotspots across the globe with consistently, 

geographically coincident high diversity across a multitude of taxonomic groups 

(Myers et al., 2000), although more detailed investigation indicates that there is 

limited congruence within taxonomic groups in species distributions (Ceballos & 

Ehrlich, 2006; Orme et al., 2005). There is still uncertainty over the strength of this 

diversity effect, as relationships between the diversity of different taxa aboveground 

have been shown to be variable and weak (Wolters et al., 2006). Results investigating 

the relationship between above- and below-ground biodiversity have also been 

variable, with either positive or no correlations commonly observed between plant 

diversity and soil microbial diversity. 

The relationships between the diversity of different taxonomic groups can vary by the 

identity of those groups, the overlying environmental conditions and the type of 

diversity considered. Certain taxonomic groups appear to show more positive 

relationships with plant diversity. For example, fungal diversity, particularly 

mycorrhizal diversity, is often found to be positively related to plant diversity 

(Hiiesalu et al., 2014; Milcu et al., 2013; Nguyen et al., 2016; Peay et al., 2013; Ren et al., 

2017; Yang et al., 2017). Also, the type of plants that are considered in plant diversity 

can be important, for example the number of flowering plant species and their 

abundance has been shown to be important in influencing bee and butterfly 

abundance and richness (Kearns & Oliveras, 2009; Potts et al., 2009). Some of the 
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positive correlations that have been found between plant diversity and soil bacterial, 

fungal and protistan diversity are explained by shared response to environmental 

variables such as climate or physicochemical soil properties. Soil pH and fertility have 

been found to drive a positive correlation between plant diversity and bacterial 

diversity in a variety of ecosystems (Goberna et al., 2016; Yashiro et al., 2018; Yuan et 

al., 2017). The metric of diversity used is also important, with phylogenetic diversity 

having been used as an alternative to species richness or diversity, with positive 

associations being noted in some studies, e.g. plant and butterfly communities 

(Pellissier et al., 2013), and no improvement in predictive performance for others, e.g. 

plant and bacterial communities (Barberán et al., 2015; Navrátilová et al., 2018). 

While relationships between the biodiversity of different taxonomic groups may be 

variable, there have been many results demonstrating that the composition of plants 

may be related to the composition of other taxonomic groups even when biodiversity, 

i.e. species richness and diversity, is not. Relationships between the composition of 

plants and the composition of soil bacteria, fungi and protists have been found in both 

experimental and observational studies (Barberán et al., 2015; Cline et al., 2017; 

Delgado-Baquerizo et al., 2018; Leff et al., 2018; Prober et al., 2015). These correlations 

in composition in observational results can persist even after controlling for 

environmental drivers such as climate or soil physicochemical properties (Delgado-

Baquerizo et al., 2018; Prober et al., 2015). At the larger scales, information on the 

heterogeneity of vegetation and landscape composition from satellite imagery has also 

been used to predict bird richness and composition (St-Louis et al., 2014), and to a 

lesser extent bee species (Hofmann et al., 2017).  

Correlation between the biodiversity of different taxa could be due to the direct 

influence of one taxonomic group on another or down to shared response to 

environmental conditions. These two mechanisms may lead to similar patterns but 

have differing implications for land use management. Therefore, disentangling the 

relative influence of abiotic and biotic impacts upon biodiversity is key. There have 

been some experimental manipulations established to evaluate the impact of plant 

diversity upon ecosystem functioning, including changes in the biodiversity of the 

other groups. These have found positive relations between plant diversity and the 



 

143 

 

diversity of some other organisms, particularly for aboveground herbivores and less so 

for soil microbial groups (Cline et al., 2017; Dassen et al., 2017; Lind et al., 2015; 

Weisser et al., 2017). However, by necessity these experiments are limited in scope, 

covering a limited set of environmental conditions and plant species combinations. 

The use of field survey information to establish real-world correlations across taxa is 

essential if we are to cover a wide range of environmental and biotic conditions. 

Controlling for confounding variables within statistical analysis can further help us 

consider what might be the direct impact of one taxonomic group upon another. 

Here we present the results from a field survey across the entire range of terrestrial 

habitats in Wales, where plant, bird, pollinator and soil fungal and microbial diversity 

were each measured at the same sites. Previous analysis has found that plant, bird and 

butterfly species richness was positively associated with land use intensity and habitat 

heterogeneity (Maskell et al., 2019), and also that the soil microbial community was 

strongly driven by land use type and pH (George et al., 2019). Here we extend these 

analyses to consider the whole ecosystem, both above and below-ground and consider 

the roles of the plant community and abiotic environment in influencing both the 

diversity and composition of other taxonomic groups across diverse habitat types. The 

objectives here are i) to investigate if plant, bird, pollinator and soil microbial diversity 

are correlated with each other in a temperate ecosystem, not confounded by 

geographical variation, ii) to investigate if the composition of one taxonomic group is 

a reliable predictor of another, iii) to evaluate whether any correlations in diversity or 

composition are due to shared response to environmental drivers, and iv) to identify 

the presence of any co-occurrence relationships between specific taxa of different 

domains and identify overarching ecological rationale that defines ecosystem level 

shared community composition. 

5.2 Methods 

5.2.1 Field measurement programme 

The data was collected as part of the Glastir Monitoring and Evaluation Programme 

(GMEP) field measurement program in Wales (Emmett et al., 2017). In total, 300 

individual 1 km squares were randomly selected from within land classification strata 
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in proportion to their extent in order to be representative of the range of habitat types 

across Wales. Sampling occurred over a five month period across each of the summers 

of 2013 to 2016; each square was only surveyed once over the four years with different 

squares being surveyed each year. Every square was subjected to a habitat survey, bird 

survey, two pollinator survey transects and multiple plant survey plots. For each 

square there were up to five 200 m2 square plant survey plots that also had soil 

samples taken. Soil samples were analysed for a variety of soil physicochemical 

properties, including pH in 1:2.5 CaCl2 suspension, total carbon, nitrogen and 

phosphorus, bulk density, water content, water repellency and electrical conductivity 

in 1:2.5 distilled water suspension. The data and full methods are available at 

doi.org/10.5285/0fa51dc6-1537-4ad6-9d06-e476c137ed09 (Robinson et al., 2019). 

Within the first two years of the survey soil samples were taken for microbial 

community composition analysis from three of the 200 m2 plots, randomly selected 

per each 1 km square.  

The surveyors mapped the habitats of each square and assigned each plot to a habitat 

according to the UK Joint Nature Conservation Committee criteria (Jackson, 2000). 

The main habitats included in this study were different grassland habitats, with some 

woodland and heathland. The plot level measurements of microbial diversity were 

derived from 31% improved grassland; 23% neutral grassland; 12% acid grassland; 7% 

broadleaved woodland; 7% coniferous woodland; 7% bog; 4% arable; 3% dwarf shrub 

heath; 3% fen, marsh and swamp; and 2% bracken. Precipitation was the annual 

average rainfall and temperature was the annual average daily temperature for 1981-

2010 calculated on a 1 km grid. All climate data came from the Met Office © Crown 

copyright 2019.  

 

5.2.2 Biological data 

5.2.2.1 Plant survey 

Vegetation surveys were conducted for multiple plots per square. Overall, there were 

ten types of sampling plots in total. Some plots were targeted to specific landscape 

features (e.g. hedges, stream banks, priority habitats), meaning the total number and 
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proportion of plot types varies across squares. For each plot, plant functional 

properties were created based on reference to literature values for growth form and 

other indices such as Ellenberg values (Hill et al., 2004). The total number of vascular 

plant species recorded across the entire 1 km square was used as plant species richness 

for the square level analyses. Due to the differences in sampling effort across the 

squares rarefaction curves were constructed to check that the number of plant species 

found had reached saturation. Plant species that were important to the diet of lowland 

birds, butterfly larvae and nectar provision were identified and the species richness of 

those three groups calculated (Baude et al., 2016; Smart et al., 2000). A phylogenetic 

tree for the plants within the survey was created using the V.PhyloMaker package to 

match plant species to a phylogenetic tree (Jin & Qian, 2019), with the taxize package 

having been used to match our plant species identifiers to the NCBI database 

(Chamberlain & Szocs, 2013). 

5.2.2.2 Bird and pollinator surveys 

Birds were surveyed based on four morning visits to each square, equally spaced 

through mid-March to mid-July. Surveyors walked a route that passed within 50 m of 

all parts of each survey square, varying the start point for each survey in order to visit 

all parts of the square at least once before 08:00 h. The total number of bird species 

recorded across all visits per square was used to calculate total bird species richness. 

Pollinator surveys were split into two independent parts: two 1 km transect routes 

separated by at least 500 m and where possible 250 m from the edge of the 1 km 

square; and a 20 minute timed search in a 150 m2 flower rich area within the 1 km 

square. The total number of butterfly species and bee groups recorded per square were 

used to calculate richness. Pollinator surveys were managed by Butterfly Conservation 

and bird surveys managed by the British Trust for Ornithology. 

5.2.2.3 Soil microbial diversity and community composition 

Soil samples for microbial biodiversity analyses were taken using a gouge auger at 5 

points around the physicochemical soil core location down to 15 cm, and then bulking 

together the samples. DNA was extracted from these samples using mechanical lysis 

and homogenisation in triplicate from 0.25 g of soil per sample. The 16S (V4), ITS1 and 

18S regions of the rRNA marker gene were targeted for amplicon sequencing to 
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analyse the bacterial, fungal and general eukaryotic diversity respectively. For a full 

description of the methods used see George et al. (2019). Amplicon libraries of 2013 

samples were constructed at Bangor University. Library preparation for 2014 samples 

and Illumina sequencing for both years were conducted at the Liverpool Centre for 

Genome Research. Sequences with associated sample metadata have been uploaded to 

The European Nucleotide Archive with the following primary accession codes: 

PRJEB27883 (16S), PRJEB28028 (ITS1) and PRJEB28067 (18S). 

All bioinformatics were performed on the Supercomputing Wales system. Illumina 

adapters were trimmed from sequences using Cutadapt (Martin, 2011). The sequences 

were then de-multiplexed, filtered, quality-checked, and clustered using a 

combination of USEARCH v. 7.0 (Edgar, 2010) and VSEARCH v. 2.3.2 (Rognes et al., 

2016) programmes. Sequences with a maximum error greater than 1 and < 200 

basepairs were removed following the merging of forward and reverse reads for all 

sequences. Operational taxonomic units (OTUs) were clustered using open reference 

methodology as described in George et al. (2019). Filtered sequences were matched 

first against either the GreenGenes v. 13_8 (DeSantis et al., 2006) or UNITE v. 7.2 

(Kõljalg et al., 2013) databases. Ten per cent of sequences that failed to match were 

clustered de novo and used as a new reference database for failed sequences. 

Sequences that failed to match with the de novo database were subsequently clustered 

de novo. Chimeric sequences were removed. Taxonomy was assigned to OTUs using 

QIIME (Caporaso et al., 2010) with RDP methodology (Wang et al., 2007) from the 

GreenGenes database v. 13_8 and UNITE database v. 7.2 for the 16S and ITS1 data, 

respectively. Singletons and OTUs appearing in only 1 sample were removed from 

OTU tables following taxonomic assignment. All non-bacterial and non-fungal OTUs 

were removed from each OTU table. Fungal OTUs were matched to trophic mode at a 

genus level with FunGUILD (Nguyen et al., 2016). 

5.2.3 Statistics 

All statistical analyses were performed within R version 3.6.1 (R Core Team, 2019). To 

account for the differences in read depth between samples, rarefaction was used as it 

has been shown to preserve biological relationships (Weiss et al., 2017). The fungal 

data was rarefied to 1750 reads, bacteria to 30000 reads, and heterotrophs to 1750 
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reads. Samples below this threshold were discarded; resulting in 432 fungal (ITS) 

measurements, 430 fungal (18S) measurements, 431 bacterial measurements and 425 

heterotrophic protist measurements. Arbuscular mycorrhizal (AM) fungi were 

identified as the members of the phylum Glomeromycota within the 18S dataset. 

Biodiversity indices, i.e. richness, Shannon and Simpson diversity, were calculated 

after rarefaction, which was repeated 100 times and the rounded average result used in 

further analysis. For the analysis of community composition the rounded average of 

20 rarefaction repeats was used. Bray-Curtis distance was calculated on the rarefied 

matrix. Rarefaction and distance calculation were performed using the vegan package 

(Oksanen et al., 2018). Unrooted phylogenetic diversity was calculated using the 

PhyloMeasures package in R for plants, bacteria, heterotrophic protists and AM fungi 

(Tsirogiannis & Sandel, 2016). 

The effect of pH upon the bacterial, fungal and heterotrophic richness was modelled 

as a sigmoidal non-linear Bayesian model within the brms package in R (Bürkner, 

2017). There was a group-level effect on the intercept as square ID in order to account 

for the spatial element of the data. For heterotrophic protists the fit of this sigmoidal 

pH model was compared to the fit of a linear model with bacterial richness. The 

impact of plant richness upon bacteria or fungi was modelled using three models: a no 

interaction model; a model that allowed the upper threshold of bacterial or fungi to 

vary with plant richness; or a model that allowed all parameters other than the pH at 

maximum growth to vary with plant richness. Models that also allowed the pH at 

maximum growth parameter to vary with plant richness did not converge. 

Heterotrophs were modelled using both a no interaction model and allowing an 

interaction between bacterial and plant richness. The effect of plant richness, 

precipitation and elevation on butterfly richness, bee richness and bird richness were 

modelled as a multivariate Bayesian regression model with a negative binomial 

response. Biological recording region (vice county) and year were used as group-level 

effects to account for the spatial and temporal nature of the data. Plant species 

richness always had precipitation and elevation as the sole fixed effect predictors. 

Models were compared using leave-one-out cross-validation (Vehtari et al., 2017). 
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Comparison of the composition of the different biological communities was done 

through comparison of the ecological distance matrices. Binary Jaccard distance was 

used for plant, bird and butterfly species composition and Bray-Curtis distance used 

for bee and hoverfly groups due to their lower richness. Distance matrices were 

compared directly using visual inspection, spearman rank correlations and Procrustes 

analysis using the protest function in the vegan package. To account for the shared 

environmental drivers and spatial factors that could be driving changes in the 

aboveground communities the variance was partitioned using the varpart function. 

The response variables were the NMDS scores of each group based on Jaccard distance 

and the predictors were climate (represented by temperature and precipitation), 

spatial distance (represented by principal coordinates of neighbour matrices), plant 

community composition (represented by NMDS scores in 4 dimensions), and for the 

plot level data only the first four dimensions of a PCA upon soil physicochemical 

properties (pH, carbon, nitrogen, total phosphorus, bulk density, electrical 

conductivity, water content, water repellency). 

The co-occurrence of specific taxa was analysed for the microbial and co-located plant 

data using the SpiecEasi package which examines co-occurrence relationships 

conditional on all the other taxa present (Kurtz et al., 2015). We analysed cross-

domain relationships using an extension to SpiecEasi (Tipton et al., 2018). Only 

common taxa were included within the analysis to reduce the number of false positive 

associations (Weiss et al., 2016), which we identified as being present in 75% of sites 

for bacteria, 50% for heterotrophic protists, 25% for fungi (ITS only) and 10% for 

plants. In total, there were 1213 bacterial OTUs, 512 heterotrophic OTUs, 180 fungal 

OTUs and 28 plant species that fulfilled these criteria. The resulting network was 

analysed for the presence of clusters using the spinglass algorithm to take account of 

both the positive and negative links in the igraph package (Csardi & Nepusz, 2006; 

Traag & Bruggeman, 2009). The resulting clusters were laid out without their 

interlinks using the Fruchterman-Reingold layout algorithm based on positive links 

only for graphical simplicity, then the layout used for the plots with all edges.  

A Bayesian joint species distribution model was used to analyse the response of each 

plant, bird, butterfly, bee and hoverfly taxa to climate while accounting for spatial 
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autocorrelation in the Hmsc package (Ovaskainen et al., 2017; Tikhonov et al., 2019). 

The environmental predictors were average annual precipitation (1981-2010) and daily 

temperature (1981-2010) which were scaled to have mean zero and standard deviation 

of one. The original annual means were 1535 mm (standard deviation 521 mm, range 

660-3650 mm) and 9.0°C (standard deviation 1.1°C, range 5.8-11°C). Only species that 

appeared in over 10 sites were included in the model and thirteen of those had to be 

removed in order to let the model converge. All species were represented as binary for 

presence-absence and the models run with the default probit distribution. The 

resulting model fit object had the mean residual association between each species pair 

extracted and converted into a network which had the clusters identified and plotted 

as above. 

5.3 Results 

5.3.1 Alpha diversity  

We found that bacterial, fungal, heterotrophic protistan, bird, bee and butterfly 

richness positively correlated with plant diversity (Appendix G Figures 1 and 2). 

Diversity of the different groups varied considerably across Wales (Figure 5.1). Within 

the soil microbial groups, bacteria and arbuscular mycorrhizae (AM) showed the 

strongest correlation with plants (Spearman rank correlation of both 0.38), with the 

heterotrophic protists similar (rho = 0.34), and the general fungal (ITS) correlation 

lower (0.10) (Figure 5.2). Bacterial richness was positively correlated with both fungal 

(ITS: 0.52, AM: 0.57) and heterotrophic protistan richness (rho = 0.65). Soil microbial 

richness was positively correlated to the richness of forb plant species rather than to 

overall plant richness or graminoid richness. Microbial richness was also negatively 

correlated to woody plant richness, particularly in AM fungi (rho -0.67).  
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Figure 5.1: The square level richness of birds (a), butterflies (b), bee groups (c), hoverfly groups (d), plants (e), 

bacteria (f), fungi (g), AM fungi (h) and heterotrophic protists (i) across Wales. 
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Plant diversity in the 1 km squares positively correlated most strongly with bird species 

richness (0.50), followed by butterfly species richness (0.43), then bee group (0.36) 

and hoverfly group (0.34) richness. The correlation with the richness of plant species 

identified as either nectar producing or important to the diet of birds was comparable: 

birds 0.58; butterfly 0.49; bee 0.40 and hoverfly 0.38. The different pollinator groups 

were positively associated with each other with butterflies and bees associated more 

strongly than hoverflies with the other two groups (rho = 0.56 compared to rho 0.42-

0.44). Bird species richness was positively correlated with butterfly (0.48) and bee 

richness (0.47) and to a lesser extent hoverfly richness (0.29). Average soil microbial 

diversity per 1 km square also positively correlated with bird, butterfly and hoverfly 

richness (Figure 5.1). Bacterial richness showed a positive correlation of 0.49 with bird 

richness, 0.54 with butterfly richness, 0.37 with bee richness and 0.34 with hoverfly 

richness. Fungal and heterotrophic protistan richness showed correlations of similar 

magnitude (Appendix G Figure 2). 

  

Figure 5.2: Microbial richness is weakly positively related to plant richness across multiple groups, spearman 

rank correlations were 0.38, 0.10, 0.38, and 0.34 for bacteria, fungi, AM fungi and heterotrophs 

respectively. 
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5.3.1.1 Belowground diversity 

The impact of plant richness upon bacterial and fungal richness was negligible once 

the change in soil pH was accounted for (Figure 5.3, Appendix G Figure 3). The 

inclusion of plant richness as well as pH to predict bacterial richness resulted in a 

slight improvement in predictive performance but the standard errors of the 

improvement were of the same magnitude as the difference (elpd difference: 3.2 ± 

3.0). This was also the case for overall fungal diversity (elpd difference: 3.8 ± 3.0) and 

AM fungi (elpd difference: 1.9 ± 1.9). Bacterial richness appears to increase with 

increasing plant richness in soils with pH > 3.5 but decrease with increasing plant 

richness in soils with pH < 3.5. The opposite trend is true for fungal ITS richness, and 

AM fungal richness always increases with increasing plant richness. Using forb 

richness instead of overall plant richness resulted in equivalent model predictive 

performance once standard errors were taken into account for bacteria (0.5 ± 2.6) and 

AM fungi (0.7 ± 7.6), and slightly worse performance for general fungi (3.8 ± 1.9).  

 

Figure 5.3: The impact of plant diversity upon bacterial and fungal richness once the gradient in pH is 

accounted for. Panel a shows bacterial richness, panel b fungal (ITS) richness. Points are coloured by the 

plant richness and fit lines predicted microbial richness for 1 plant species (purple), 10 plant species 

(blue) and 20 plant species (green) are included. Note that these models showed no substantial 

improvement in predictive performance compared to pH only. 
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The richness of the heterotrophic protists was better predicted by changes in bacterial 

richness than soil pH (Figure 5.4). pH did not predict any residual changes in 

heterotrophic richness once the positive trend in response to bacteria was accounted 

for. The impact of plant richness was negligible, with only marginal improvement in 

model predictive performance with the addition of plant richness (elpd difference: 0.5 

± 1.3). The effect size of the plant richness effect was so small as to be of little 

relevance to soils in practice (Figure 5.4). There was only a negligible improvement in 

predictive performance when forb richness was used instead of overall plant richness 

(elpd difference: 1.1 ± 1.6). 

 

  

Figure 5.4: Heterotrophic protistan richness plotted against bacterial richness. Points are coloured by plant 

richness and predicted heterotroph richness for 1 plant species (purple), 10 plant species (blue) and 20 

plant species (green) are included. 

Phylogenetic diversity (PD) was calculated for plants, bacteria, heterotrophic protists 

and fungi using the 18S region. Bacterial PD increased with increasing plant PD when 

pH was above 4 (Appendix G Figure 4, elpd difference compared to pH only 8.5 ± 3.7). 

Fungal PD was only slightly impacted by plant PD once pH was taken into account 

(elpd difference 1.0 ± 0.9). Heterotrophic and bacterial PD were less strongly related 

than their respective richness values, and heterotrophic PD more strongly tracked pH 

than bacterial PD (Appendix G Figure 5, elpd difference 25.6 ± 13.1). 
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5.3.1.2 Aboveground diversity 

 

Figure 5.5: The predicted impact of plant diversity on butterfly, bee and bird diversity in our dataset. All 

diversities are positively correlated with each other. The points are randomly jittered on the vertical axis 

by 0.1 to reduce data overlap. 

Plant diversity positively impacted the diversity of birds, bees and butterflies even 

after accounting for changes in precipitation and temperature (Figures 5.5, 5.6, 

Appendix G Figure 6). The best model by leave-one-out cross validation had 

temperature and precipitation as predictors of plant, butterfly, bee and bird diversity 

and plant diversity as a predictor of butterfly, bee and bird diversity. Removing plant 

diversity reduced the predictive capability of the model (elpd difference = 19.2 ±6.7, 

Appendix G Figure 7), but not as much as removing precipitation and elevation (elpd 

difference = 100.5 ±14.3). The predicted impact of going from the 53 to 132 plant 

species (the 10th to 90th quantile) if precipitation and temperature were kept constant 

(at 1500 mm and 9°C respectively) would be to increase butterfly richness by 1.2 

species, bee richness by 0.5 groups and bird diversity by 13.2 species. This is in 

contrast to an expected increase in butterfly richness by 4 species, bee richness by 1 

group and bird diversity by 25.8 species with the same increase in plant richness from 

the model without keeping constant temperature and precipitation.  
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Figure 5.6: The predicted impact of plant diversity on butterfly, bee and bird diversity once changes in 

precipitation and elevation were included in the model. The points are randomly jittered on the vertical 

axis by 0.1 to reduce data overlap.  

The positive influence of plant species richness upon bee and butterfly richness may 

be driven by the increased variety of food sources when more plants are present. The 

diversity of nectar producing plants and plants identified as important in the diets of 

lowland birds were highly positively correlated with overall plant species richness 

(spearman rho of 0.96 and 0.87 respectively). Using the species richness of nectar 

producing plants resulted in marginally better predictive performance for bees and 

butterflies but improvement was close to the margin of error (elpd difference for 

butterflies: 1.6 ± 1.5; bees: 0.5 ± 0.3). The richness of nectar producing plants was more 

closely related to butterfly richness than was the richness of plants important to 

butterfly larvae, but both performed in a similar way (elpd difference: 1.0 ± 1.5). The 

species richness of plants identified to be important in the diet of lowland birds did no 

better than overall plant richness at predicting bird richness (elpd difference: -0.3 ± 

3.5).  
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5.3.2 Composition 

5.3.2.1 Correlation 

Plant community dissimilarities were positively associated with fungal, bacterial, 

heterotrophic protistan, bird and butterfly community dissimilarities (Figures 5.7, 

5.8). Bacteria and heterotrophic protists showed a stronger correlation to plant 

composition than fungi did, with the Procrustes correlation statistic being 0.64, 0.65 

and 0.55 respectively. All were significant at p = 0.001. Differences in heterotrophic 

protistan composition strongly tracked changes in bacterial composition, with a 

Procrustes correlation statistic of 0.93 (Figure 5.7). Fungal composition also correlated 

with bacterial composition, with a Procrustes correlation statistic of 0.71. Birds and 

butterfly community dissimilarity were more strongly related to plant community 

dissimilarity than the link between bee, hoverfly and plant dissimilarity. This was 

reflected by both the spearman rank correlations (Figure 5.8) and the Procrustes 

correlation statistic (0.73, 0.59, 0.23 and 0.32 for bird, butterflies, bees and hoverflies 

respectively). However, all the Procrustes analyses were found to be significant at p = 

0.001. 
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Figure 5.7: Bray-Curtis distance between belowground trophic communities are positively correlated.  
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Figure 5.8: Correlation between plant community dissimilarity and bird and pollinator dissimilarity varies by 

group. Spearman rank correlations are 0.55 (birds ~ plants), 0.45 (butterflies ~ plants), 0.09 (bees ~ 

plants) and 0.15 (hoverflies ~ plants). 

5.3.2.2 Accounting for environmental factors 

Partitioning the variance described by the spatial, soil and plant community reveals 

that the plant community explains unique variance in the bacterial, fungal and 

heterotrophic protist communities (Figure 5.9). The plant community at the plot scale 

was partially explained by soil, climate and spatial factors but had considerable 

unexplained variance. Climate was initially included but did not explain any unique 

variance in the soil microbial communities so was omitted from this analysis. The 

pattern of variance explained was similar for bacteria and fungi, with the soil 

physicochemical properties and plant community explaining more variation than the 

distance between samples. However, there was a large proportion of variation that was 
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explained by soil, plant and spatial factors together. The heterotrophic protist 

community had a large proportion of their variance explained by variation in the 

bacterial community. Soil properties, spatial factors and the plant community 

explained limited variation once changes in the bacterial community were accounted 

for but did explain joint variation with the bacterial community. 

 

Figure 5.9: Variation partitioning of the effects of space, climate, and soil properties on the composition of the 

plant community (a), bacteria (b), fungi (c), and heterotrophic protists (d). Plant community composition 

is included as a predictor for soil microbes, and bacterial composition as a predictor of heterotrophic 

protists. The circles, or ellipses, are coloured by the identity of the predictor: spatial factors are yellow, 

soil properties are orange, climate is blue, plant community composition is green, and bacterial 

composition is purple. Circle areas are proportional to the relative importance of each predictor, with 

the overlap being positioned by eye to be roughly representative of the relative importance of each 

segment. The adjusted R2 are written on or next to the corresponding segment with adjusted R2 < 0.01 

being omitted from the diagram.  

The plant community explained some of the variance in bird, butterfly and bee and 

hoverfly community composition (Figure 5.10). The plant community at the 1 km 

square level was largely explained by variation in precipitation and temperature, with 

some effect of the distance between squares interacting with climate. The bird 

community was described fairly well by the plant community and the climate, whilst 
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also incorporating a spatial interaction between the two. The pollinator communities 

were explained relatively poorly, the plant community, climate and spatial factors do 

appear to be important together but overall there is little variation explained. 

Precipitation and temperature are less important to bees and hoverflies than they are 

to the other groups, with precipitation and temperature in general being the least 

important factor for the animal groups but much more important for plants. Spatial 

factors appear to be relatively more important for the animal groups than they are for 

the plants. 

 

 

Figure 5.10: Variation partitioning of the effects of space, and climate on the composition of plants at the 

square level (a), birds (b), butterflies (c), and bees and hoverflies (d). Plant community composition is 

included as a predictor for bird, butterfly and bee and hoverfly composition. Spatial factors are 

represented by yellow circles, climate is represented by blue circles and plant community composition is 

represented by green circles. All other properties as in Figure 5.9. 
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5.3.3 Co-occurrence relationships 

 

Figure 5.11: The co-occurrence network between bacterial, fungal, heterotrophic protist and plant taxa. The 

taxa are represented by circles and coloured by whether they are bacteria (red), fungi (blue), 

heterotrophic protists (orange), or plants (green). Negative links are shown in violet (dark violet if less 

than -0.1), and positive links are shown in grey (medium dark grey if greater than 0.1, and dark grey if 

greater than 0.2). Links with absolute value less than 0.05 are not shown for graphical simplicity but are 

included in all calculations.  

Cluster analysis of the microbial and plant co-occurrence network created by 

SpiecEasi revealed the presence of a few clusters of taxa that occur in specific habitats 

(Figure 5.11). In total there were 1378 bacterial taxa, 529 heterotrophic protists, 188 

fungal taxa (ITS only) and 28 plant taxa included in the analysis. SpiecEasi found 71144 

links between the 2123 taxa of which two thirds were positive. Three quarters of the 
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links had particularly low weights between -0.05 and 0.05. Twenty-three clusters were 

identified, of which there were nine with over 100 members and 14 with less than 20 

members. The largest, bacteria dominated, cluster towards the middle left in Figure 

5.11 (cluster 20 in Appendix G Figure 8) contains many taxa specific to acidic 

environments, including a large proportion of acidobacteria and proteobacteria as well 

as bilberry (Vaccinium myrtillus) and purple moor-grass (Molinia caerulea). The 

second largest cluster (cluster 8, 393 taxa compared to 397 in cluster 20) below and to 

the right of the largest cluster contains more fungi, heterotrophic protists and several 

grasses and forbs that prefer more fertile and less acidic environments (Appendix G 

Figure 8). The third largest cluster is dominated by fungi, heterotrophic protists and 

plants (cluster 2), with a wide variety of fungal trophic modes and plant 

environmental preferences. Also of interest are two clusters tentatively identified as 

being related to waterlogged environments. This includes a cluster of taxa (cluster 12, 

at the base of Figure 5.11) that contains many obligate anaerobic bacteria such as 

Clostridia and Geobacter, many Heteromita protists, a limited number of saprotrophic 

fungi and two common wetland grasses (Juncus effusus and Agrostis stolonifera). In 

addition, cluster 17, towards the bottom right of Figure 5.11, also contains obligate 

anaerobes such as Clostridia but is dominated by the mesophilic spore-forming gram-

positive Bacillales, many Heteromita and saprotrophic fungi. 
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Figure 5.12: The co-occurrence network between plant, bird, butterfly, bee and hoverfly taxa. The taxa are 

represented by circles and coloured by whether they are plant (green), bird (blue), butterflies (red), or 

bees and hoverflies (yellow). Negative links are shown in violet (dark violet if less than -0.5), and positive 

links are shown in grey (medium dark grey if greater than 0.1, and dark grey if greater than 0.5). Links 

with absolute value less than 0.1 are not shown for graphical simplicity but are included in all 

calculations.  

Joint species distribution modelling of the plant, bird and pollinator species revealed 

two main clusters of species response (Figure 5.12). In total 464 taxa were included in 

the analysis as they were present in sufficient sites to warrant robust analysis. The 

macrobial taxa included 335 plant species, 100 bird species, 22 butterfly species, 4 bee 

groups and 4 hoverfly groups. Overall, the proportion of the variance in species 

occurrence explained by rainfall and temperature was low (Appendix G Figures 9, 10). 

The residual associations between species could be largely split into two clusters 
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(Figure 5.12, Appendix G Figure 11), including a species cluster associated with more 

fertile landscapes, on the right of Figure 5.12, with many species that are more 

regulated by temperature than precipitation. The cluster includes all but one bee and 

hoverfly group, all the butterflies that are associated with gardens and hedgerows, 

plants that are more adapted to fertile conditions, and 64 bird species which had a 

large proportion of woodland species. The other large cluster on the left of Figure 5.12 

included plant species that were adapted to less fertile conditions, 36 bird species of 

various habitat preference, grassland butterflies, and one hoverfly group (thin aphid 

eaters). The clusters do not separate out into groups containing plants, birds or 

pollinators only at this scale, and at the finer scale of cluster associations there are 

only a few small pockets of plant or bird co-occurring clusters. 

5.4 Discussion 

While we found that the diversities of above and below-ground taxonomic groups 

positively correlated with plant diversity, the direct effect of plants was much higher 

above-ground than below-ground. Our results that the positive correlation of plant 

and soil microbial diversity is driven by the changes in the soil environment are in 

agreement with previous work showing the importance of soil pH and fertility in 

jointly influencing plant and microbial diversity (Goberna et al., 2016; Tedersoo et al., 

2016; Yashiro et al., 2018; Yuan et al., 2017). However, we did find that plant 

phylogenetic diversity positively influenced bacterial phylogenetic diversity at pH > 4, 

which was unexpected as many previous results have found that plant phylogenetic 

diversity is a poor predictor of soil microbial communities (Barberán et al., 2015; 

Goberna et al., 2016; Leff et al., 2018; Navrátilová et al., 2018). Both arbuscular and 

ecto-mycorrhizal fungi have been found to be positively related to plant phylogenetic 

diversity (Milcu et al., 2013; Nguyen et al., 2016). However, we found no relationship 

between fungal phylogenetic diversity and plant phylogenetic diversity. We found 

some indication that the correlation between plant and soil microbial diversity was 

due to a correlation between forb diversity and soil microbial diversity. Herbs have 

been found to be more strongly related to prokaryotic diversity in forest ecosystems 

(Wang et al., 2016), however, in our results it appears that the association is due to 

shared responses to environmental drivers rather than direct diversity relationships. 
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Increasing bird and pollinator diversity in conjunction with plant diversity was only 

partially confounded by the climate gradient, indicating that plant diversity has a 

direct impact upon bird and pollinator groups. This could be due to the provision of a 

greater variety of food and habitat sources, through increased landscape heterogeneity 

or potentially through the influence of an unidentified confounding variable such as 

anthropogenic activity (Potts et al., 2009; Stein & Kreft, 2014). Previous work upon 

this dataset has found that higher land-use intensity and habitat heterogeneity were 

positively associated with the species richness of plants, birds and butterflies (Maskell 

et al., 2019). Our result that the diversity of food source plants was a slightly better 

predictor than general plant species richness for bees and butterflies but not for birds 

suggests that the relative role of food and habitat provision, land-use intensity and 

habitat heterogeneity may differ by group. For birds it appears that provision of food 

sources is not the key driver within our data, indicating that the land-use intensity and 

habitat heterogeneity may be more important. The heterogeneity of the landscape, 

particularly the heterogeneity of the topography, land cover and vegetation, has 

previously been found in many areas to be positively associated with the diversity of 

plants, birds and pollinators (Hofer et al., 2011; Hofmann et al., 2017; St-Louis et al., 

2014). Land-use intensity can positively influence the diversity of certain animals 

when land-use intensity shifts from low to medium. Our data contained few high-

intensity farmland sites which we would expect to have lower biodiversity due to the 

unimodal relationship between land use intensity and biodiversity (Maskell et al., 

2019; Maskell et al., 2013).  

The very strong relationships between heterotrophic protistan diversity and 

composition and that of bacteria within our analysis most likely reflect the importance 

of the bacterial food source to heterotrophic protists. Bacteria and bacterivorous 

protists have been found to show similar seasonal patterns in grassland habitats, with 

the implication that they may be following a predator-prey cycle, but the major 

properties structuring heterotrophic protist communities in that grassland were 

spatial and soil edaphic properties (Fiore-Donno et al., 2019). The properties that 

influence protistan community structure do appear to be different across different 

ecosystems (Tedersoo et al., 2016). The lack of influence of plant species richness upon 
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heterotrophic diversity was in agreement with previous results on experimental 

manipulations of plant diversity (Dassen et al., 2017). Functional changes in plant 

communities have been linked to changes in heterotrophic protists (Dassen et al., 

2017) but in at least some cases these appear to be mediated by changes in the 

bacterial community (Valencia et al., 2018). Our results clearly indicate a strong 

linkage between bacterial and heterotrophic protistan communities that could 

represent the dominant role of trophic dynamics over edaphic properties and plant 

inputs in structuring those communities. 

The limited correlation between plant and soil microbial diversity we have found in 

our analysis may be related to the fact that our soil microbial communities are from 

the bulk soil and not the rhizosphere. However, even papers looking at the impact of 

plant species richness on bacterial and fungal richness in the rhizosphere have found 

no relationship, but have found a relationship between composition (Navrátilová et 

al., 2018; Singh et al., 2008). The impact of plants upon the soil will decrease as the 

distance from the root increases but note that the root distribution may cover far 

more distance than the aboveground plant distribution (Barberán et al., 2015; Hiiesalu 

et al., 2012). Soil organisms that are more dependent upon plant inputs and that are 

capable of growing through large volumes of soil, e.g. mycorrhizal fungi, might be 

expected to be show stronger relations with the plant community (Nguyen, Williams, 

et al., 2016). We found that there was a weak positive relationship between AM 

richness and plant diversity. This is consistent with previous results showing positive 

relationships between plant diversity and AM fungi (Hiiesalu et al., 2014), and may be 

related to the fact that the majority of the plants in our survey are herbs and grasses 

which more commonly form AM associations than other types of mycorrhizal 

associations (Wang & Qiu, 2006). The issue of scale and how this influences trophic 

interactions is key to understanding how the ecosystem works and the impact of 

different taxa upon each other and ecosystem function.  

Our results indicate that the impact of plant diversity upon bacterial and fungal 

diversity is both minimal and dependent upon the environmental context. 

Unexpectedly, we found that the direction of impact of plant diversity upon both 

fungal and bacterial diversity reversed in low pH soils. The importance of the soil and 
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climatic environment in influencing the links between plant and soil microbial 

diversity and composition have been found previously in a variety of ecosystems 

(Delgado-Baquerizo et al., 2018; Gao et al., 2017; Waldrop et al., 2017). This suggests 

that plant diversity impacts soils in different ways depending upon the soil 

environment and particularly that conclusions regarding the impact of plant diversity 

within more commonly studied neutral soils cannot be extrapolated to other 

environments. This offers a cautionary note to taking the results of plant biodiversity 

experiments conducted on neutral grassland soils, e.g.  the Jena experiment pH 7.1-8.4 

(Weisser et al., 2017), and applying them outside that context. The low pH soils within 

our study are a reservoir of carbon that is of great relevance to global biogeochemical 

cycling and thus requires careful study and management (Cavicchioli et al., 2019; 

Ferretto et al., 2019).  

We found that the composition of both above and belowground communities were 

influenced by plant community composition. The proportion of variance explained by 

plants was much higher in the bacterial, fungal and heterotrophic protist communities 

than in the bird, butterfly, bee and hoverfly communities. The finding that plant 

community composition explains bacterial, fungal and heterotrophic protistan 

composition is consistent with previous findings at the field (Leff et al., 2018), regional 

(Barberán et al., 2015; Chen et al., 2017; Yang et al., 2017), and global scales (Delgado-

Baquerizo et al., 2018; Prober et al., 2015). The higher proportion of explained variance 

in bird composition compared to butterfly, bee and hoverfly composition was 

unexpected as pollinators have in general been found to be closely related to plant 

composition (Hofmann et al., 2017; Kearns & Oliveras, 2009; Weisser et al., 2017). 

Overall, very little of the variation in butterfly, bee and hoverfly composition was 

explained by climate, plant communities or spatial factors. This may be due to the 

description of the plant community through NMDS scores may not have been in 

sufficient detail to capture the plant-pollinator interactions. However, within the co-

occurrence analysis there were several pollinator species and groups that did not show 

particularly strong relationships to any other taxa. Alternatively, anthropogenic 

influences or other factors not incorporated into our model may be highly important 

in driving pollinator community assembly.  
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The identification of clusters of co-occurring species within the microbial and the 

aboveground systems that correspond to particular habitat preferences indicate the 

importance of cross-domain interactions in structuring ecological communities. The 

identified clusters largely comprised of a mix of different domains and groups. Such 

diversity identified within clusters raises into question the concept of a “bacterial 

response” versus a “fungal response” to environmental stressors, when we can show 

that certain taxa within a domain are more related to taxa in another domain than 

they are to the rest of their domain. Some of the identified linkages may represent 

shared response to environmental drivers while some may be true mutualistic 

interactions across domains (Carr et al., 2019). We attempted to control for shared 

response to environmental conditions within the co-occurrence analysis of 

aboveground communities by modelling the response to temperature and rainfall and 

examining residual species correlations. However, the presence of any correlation link 

still must not be taken as the presence of a true mutualistic interaction without 

independent verification.  

Both the different taxonomic groups and the ecosystem properties and functions that 

occur across the landscape are relevant to different spatial and temporal scales. 

Previous work has shown that the scale at which biodiversity is measured impacts the 

strength of the correlation found, with 10 km2 areas showing the strongest 

relationship for aboveground diversity (Wolters et al., 2006). The life history traits of 

the community measure should be expected to impact the scale of interest, and within 

our dataset we have organisms that are largely limited to very short distances such as 

soil bacteria (Yang & van Elsas, 2018) ranging up to bird species that can travel vast 

distances. These differing communities are both intrinsically valuable and underpin 

different ecosystem services that operate at different scales, ranging from nitrogen 

mineralisation in a grain of soil through to provision of recreational activities across 

the landscape. Our results indicate that the different taxonomic groups, and therefore 

their impact, have limited areas in which they coincide. The decoupling of 

aboveground and belowground diversity that we have found indicate that 

interventions targeted to the plant community will have predictable impact upon the 

bird and pollinator diversity but shift belowground composition rather than diversity. 
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Soil microbial composition is more responsive to aboveground properties and has 

been found in some cases to be more relevant to soil functions (Delgado-Baquerizo et 

al., 2017; Zheng et al., 2019). Clearly our study is observational in nature and 

interpreting our results in a causal nature requires careful consideration of the 

potential other mechanisms underlying the biodiversity patterns that we have 

uncovered. Our results do, however, provide insight into the ecological communities 

across a wide variety of habitats and environmental conditions with potential 

implications in land management across the temperate zone. 

 

5.5 Conclusions 

The diversity of soil microbial groups are strongly correlated with each other and only 

weakly correlated with plant and aboveground biodiversity across Wales. Plant 

diversity influences bird and pollinator diversity even when accounting for shared 

response to precipitation and temperature. However, plant composition much more 

strongly influences soil bacterial and fungal composition than it does bird and 

pollinator composition. Heterotrophic protistan diversity and composition strongly 

tracks bacterial diversity and composition. Overall, there appear to be ecological 

communities that have developed across Wales that comprise diverse membership 

across various domains of life. In particular, the communities in high vs low pH and 

fertility environments are distinct in their composition and diversity. Collectively, the 

data provide an insight into aboveground and belowground biodiversity relationships 

across diverse habitats, revealing clear associations and divergences between the alpha 

and beta diversity of all domains of life in terrestrial habitats. 
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Abstract 

Understanding how climate change could impact ecosystems globally is essential in 

order to mitigate and adapt to future threats. The response of soil microbial 

communities to a changing climate will impact global biogeochemical cycles, 

potentially leading to positive and negative feedbacks as carbon and other greenhouse 

gases are emitted. However our understanding of how soil microbial communities 

respond to climate change and the implications of these changes for future soil 

function is limited. Here we assess the response of soil bacterial and fungal 

communities to long-term experimental climate change in a heathland organo-

mineral soil ecosystem. We assessed samples at two depths, from plots undergoing 4- 

and 18-years of in-situ summer drought or warming treatments and examined the 

microbial communities using Illumina sequencing of the 16S rRNA gene and ITS2 

region. We also assessed the colonisation of Calluna vulgaris roots by ericoid and dark 

septate endophytic (DSE) fungi using microscopy after 16 years of treatment. We 

found significant changes in both the bacterial and fungal communities in response to 

drought and warming, partially mediated by changes in soil pH and electrical 

conductivity. Changes in the bacterial and fungal communities were more pronounced 

after a longer period of climate manipulation. Additionally, the subsoil communities 

of the long-term warmed plots became similar to the topsoil, indicating a change in 

the depth stratification of the microbial community. Ericoid mycorrhizal colonisation 

decreased with depth while DSEs increased, however these trends with depth were 

removed by warming. We largely ascribe the observed changes in microbial 

communities to shifts in plant cover and subsequent feedback on soil physicochemical 

properties, especially pH. Our results demonstrate the importance of considering 

changes in soil microbial responses to climate change across different soil depths and 

after extended time scales in heathland ecosystems. Alterations in root abundance, 

their associated symbionts, together with general shifts in microbial community 

structure also implies significant alterations in soil functioning under prolonged 

warming and drought.  
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6.1 Introduction 

Climate change has and will continue to fundamentally alter global ecosystem 

functioning, and understanding how ecosystems will respond to future change is 

essential for societal adaptation as well as mitigation. Soils are a source of major 

uncertainty in future earth predictions, as we still do not know in sufficient detail how 

soil biogeochemical cycling, hydrology or biology will change in response to climate 

change and how these changes will alter climatic feedbacks. The potential for soils to 

accentuate or mitigate future climate change is in large part due to the vast quantities 

of carbon that is currently stored in the soil system (~2400 Pg, three times as much as 

is in the atmosphere) (Batjes, 1996; Stocker et al., 2013). In order to predict how soil 

systems will change in the future, we have to take into account how climate alters 

both the soil physicochemical environment as well as changes in the soil biota (e.g. 

Robinson et al., 2019).   

Soil microbial communities have responded to climate change manipulations across 

various experimental systems (Cavicchioli et al., 2019; Jansson & Hofmockel, 2019). 

The response of microbial communities to the different climate change related 

stressors is dependent on the type of climatic stress, the ecosystem type and the 

identity of the microbial communities. There have been recent suggestions that 

microbial responses to drought are phylogenetically conserved (Amend et al., 2016); 

though this has not been evidenced by another analysis of multiple independent 

global studies (Oliverio et al., 2016). In general, warming has a stronger impact on 

fungi than bacteria (García-Palacios et al., 2015), and stronger impacts on microbial 

abundances in colder regions (Chen et al., 2015). Meta-analyses of the impact of 

altering precipitation on microbial abundance and composition found that the impact 

on biomass depended on the climate, with high precipitation areas being more 

responsive to drought and low precipitation areas being more responsive to increased 

precipitation (Ren et al., 2018, 2017; Zhou et al., 2018). Drought has been found in 

temperate heath to result in increased fungal dominance (Haugwitz et al., 2014), and 

in grassland ecosystems fungi showed higher resilience to drought than bacteria (de 

Vries et al., 2018). 
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The response of soil microbial communities to climate change has implications for 

various essential ecosystem functions, including the provision of nutrients to plants 

through mycorrhizal associations. The response of mycorrhizal associations to 

experimental drought or warming varies according to the specific type of mycorrhiza 

(Binet et al., 2017; Olsrud et al., 2009). There is some evidence that changes in 

mycorrhizal associations in response to climate change may be more related to 

changes in plant composition than to changes in mycorrhizal interactions (Rudgers et 

al., 2014). Studies across a variety of climates and ecosystem types have found that 

altering precipitation can impact the extracellular enzyme activities within soils (Ren 

et al., 2017), resulting in impacts on soil and root respiration and associated soil 

carbon loss (Crowther et al., 2016; Ren et al., 2018). The impact of drought upon soil 

respiration has been found to be dependent on the local climate, with high 

precipitation areas being more responsive (Reinsch et al., 2017). Drought has been 

found to affect the microbial community impact on litter decomposition across 

various studies (Allison et al., 2013; Martiny et al., 2017; Santonja et al., 2017; Tóth et 

al., 2017). The legacy of global change persists within the microbial community for 

several years and impacts their ability to carry out key functions in response to new or 

altered environments (Martiny et al., 2017).  

The increasing awareness of the impact of legacy effects upon the ability of an 

ecosystem to respond to future change makes the use of long term ecological 

experiments increasingly important. Long term climate change has been found to 

impact plant communities (Andresen et al., 2016; Fridley et al., 2011), soil respiration 

(Crowther et al., 2016; Domínguez et al., 2016), hydrological behaviour (Robinson et 

al., 2016), soil mesofauna (Holmstrup et al., 2013; Petersen, 2011) and soil microbial 

communities (Rousk et al., 2013; Sayer et al., 2017). Importantly, many of these 

impacts emerge only after years of experimental treatment (e.g. Andresen et al., 2016), 

indicating how essential long term experiments are for evaluating future change. 

Within this study we will look at the climate manipulation experiment in the 

Clocaenog Forest, NE Wales, UK which has imposed summer drought and warming 

treatments over an organo-mineral heathland soil since 1999. There has been a rise in 

respiration in the treatments compared to the controls (Reinsch et al., 2017), which 
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has not been matched by changes in the plant community (Kröel-Dulay et al., 2015). 

Previous work on this site has found that drought could be impacting the summer 

fungal community only (Toberman et al., 2008), and other studies show limited 

impact of the treatments upon microbial biomass, extracellular enzyme activity, 

microbial community as measured by PFLA analysis and microbial growth rates 

(Domínguez et al., 2017; Rousk et al., 2013). Within this study our aims were to 

characterise the winter bacterial and fungal communities after four versus eighteen 

years of drought and warming, to see if the microbial communities are altered by the 

legacy of repeated drought and warming, to assess whether the microbial response can 

be cleanly split into a bacterial versus a fungal response through identifying co-

occurrence patterns; to compare changes in the bulk community composition to 

changes in mycorrhizal associations, and to see if these changes were associated with 

changes in the soil physicochemical environment. Our hypotheses were: 

1. The bacterial and fungal communities would be different after the legacy of 

repeated summer drought and warming compared to control. 

2. The impact of climate treatments on microbial community differs after 

eighteen versus four years of treatment, and would differ in the topsoil 

compared to the subsoil.  

3. The bacterial and fungal communities would show differing responses to the 

treatments, with limited interactions across the Kingdoms identified through 

network analysis. 

4. The root fungal associations would be impacted by treatment in a manner 

similar to that of the bulk soil. 

5. The changes in microbial community composition with treatment would be 

partially mediated by changes in soil pH and water content. 

 

6.2 Methods 

6.2.1 Site description and sampling 

Long term climate manipulations were carried out in North Wales on a peaty podzol. 

The vegetation is dominated by Calluna vulgaris, and we sampled ~8 cm of the 
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carbon-rich topsoil layer and an underlying ~4 cm deep layer of gley subsoil (Table 

6.1). Climate manipulations started in 1999, and consisted of a summer drought 

treatment, a warming treatment as well as un-manipulated control plots. There are 

three replicate plots per treatment. The treatments are imposed using a retractable 

roof system, with drought plots having the roofs cover the plots during summer 

rainfall events (~54% of summer rainfall is excluded) and the warming plots having 

the roofs cover the plots overnight to keep in the heat. A full description of the 

experimental set-up is provided in Beier et al. (2004). 

Table 6.1: Site characteristics 

Coordinates 53°03’N 3°28’W 

MAP (mm) 1263 

MAP reduction in drought plots (%) 25 

MAT (°C) 7.4 

MAT increase in warming plots (°C) 0.2 

Dominant plant species Calluna vulgaris 

Soil type (FAO) Peaty podzol 

Topsoil organic matter (%) 89 

Subsoil organic matter (%) 37 

 

Soil samples were collected in February 2003 and 2017 using a stainless steel auger. 

Samples were collected from both the organic topsoil and gley subsoil for both years, 

and in 2017 the 2 cm interface between the two soil layers was analysed separately. 

The samples for each plot were bulked together for topsoil and subsoil in 2003; while 

three soil cores per plot from 2017 were analysed with the three depths separately. In 

total, there were 15 samples from 2003 and 78 from 2017, as some samples were not 

able to be included. Soil pH and EC were measured on frozen 2017 soil samples using a 

Corning 220 pH meter (VWR combination electrode for pH and EC 662-1805; Jenway 

4510). Soil pH was measured from a 1:2.5 (w/v) soil-to-0.01 M CaCl2 suspension after 

equilibration for 0.5 h.  
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6.2.2 Molecular analyses of soil microbial communities  

6.2.2.1 DNA extraction and sequencing 

DNA was extracted from 0.2 g frozen field moist soil using a Powersoil® DNA Isolation 

Kit (Mo Bio Laboratories Inc., Carlsbad, CA) according to the manufacturer’s 

instructions. Amplicons were generated using a 2-step amplification approach, 

using Illumina Nextera tagged primers. Bacterial 16S V4 primers 

515f GTGYCAGCMGCCGCGGTAA and 806r GGACTACNVGGGTWTCTAAT (Walters 

et al., 2016), and Fungal ITS 

primers GTGARTCATCGAATCTTTG and TCCTCCGCTTATTGATATGC (Ihrmark et 

al., 2012) were each modified at 5’ end with the addition of Illumina pre-adapter and 

Nextera sequencing primer sequences. Amplicons were generated using a high-

fidelity DNA polymerase (Q5 Taq, New England Biolabs). After an initial denaturation 

at 95°C for 2 minutes, PCR conditions were: denaturation at 95°C for 15 seconds; 

annealing at temperatures 55°C and 52°C for 16S and ITS reactions respectively; 

annealing times were 30 seconds with extension at 72°C for 30 seconds; repeated for 

25 cycles. A final extension of 10 minutes at 72°C was included.   

PCR products were cleaned using a ZR-96 DNA Clean-up Kit (Zymo Research Inc., 

Irvone, CA) following manufacturer’s instructions. MiSeq adapters and 8nt dual-

indexing barcode sequences were added during a second step of PCR amplification. 

After an initial denaturation 95°C for 2 minutes, PCR conditions were: denaturation at 

95°C for 15 seconds; annealing at temperatures 55°C; annealing times were 30 seconds 

with extension at 72°C for 30 seconds; repeated for 8 cycles with a final extension of 10 

minutes at 72°C.  

Amplicon sizes were determined using an Agilent 2200 TapeStation system. Libraries 

were normalized using SequalPrep Normalization Plate Kit (Thermo Fisher Scientific), 

quantified using Qubit dsDNA HS kit (Thermo Fisher Scientific) and pooled together 

at equal concentrations. The pooled library was diluted to achieve 400 pM in a 40 µl 

volume after denaturation and neutralisation. Denaturation was achieved with 4 µl 2 

M NaOH for 5 minutes followed by neutralisation with 4 µl 2 M HCl. The library was 

then diluted to its load concentration of 14 pM with HT1 Buffer and 5% 

denatured PhiX control library. A final denaturation was performed by heating to 96°C 
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for 2 minutes followed by cooling in crushed ice. Sequencing was performed on an 

Illumina MiSeq using V3 600 cycle reagents. The DNA sequences are available on the 

European Nucleotide Archive under primary accession reference PRJEB33721 

(Appendix J). 

6.2.2.2 Molecular Bioinformatics   

Illumina demultiplexed sequences for 16S and ITS were processed separately in R 

using DADA2 (Callahan et al., 2016) to quality filter, merge, denoise and assign 

taxonomies as follows:   

Amplicons reads were trimmed to 270 and 220 bases, forward and reverse 

respectively. Filtering settings were maximum number of Ns (maxN) = 0, maximum 

number of expected errors (maxEE) = c(3, 5), and amplicon primer sequences removed 

using trimLeft = c(20, 20). Sequences were dereplicated and the DADA2 core 

sequence variant inference algorithm applied. Forward and reverse reads were then 

merged using mergePairs function to produce actual sequence variants (ASVs). 

Sequence tables were constructed from the resultant ASVs and chimeric sequences 

were removed using removeBimeraDenovo default settings. ASVs were subject to 

taxonomic assignment using assignTaxonomy at default settings; training databases 

were GreenGenes v13.8 (DeSantis et al., 2006; McDonald et al., 2012) and Unite 

v7.2 (Kõljalg et al., 2005) for 16S and ITS respectively. 

6.2.3 Root fungal colonisation 

Soil cores for root assays were extracted on April 2015. Each plot had a single 8 cm 

diameter core taken to 8 cm depth. The cores were cut into 1 cm subsections, soaked 

in tap water and Calluna vulgaris roots removed by hand and washed to remove soil 

particles. Root length, diameter and number of tips were measured using WinRHIZO 

version 3.2 on a flatbed scanner. Proportional colonisation of ericoid mycorrhizae 

(ErM) and dark septate endophytes (DSE) was estimated using the magnified 

intersection technique (McGonigle et al., 1990). Roots were bleached in 10% KOH for 

20 h and then stained with a 5% vinegar-ink solution (Arndal et al., 2013; Vierheilig et 

al., 1998). Roots were cut to 1-2 cm in length and 2 mm passes made along each root 

length. At the end of each pass all cells were examined for ErM colonisation or the 
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presence of DSE hyphae. ErM colonisation was categorised as 0%, 0-1%, 1-10%, 10-

50%, 50-90% and 90-100% colonisation based upon the classification system of 

Trouvelet et al. (1986). DSE proportional colonisation was calculated as the number of 

colonised intervals divided by the total number of intervals. Root biomass, length and 

fungal colonisation data is available online at the NERC Environmental Data Centre 

(Appendix K, White et al., 2019). 

6.2.4 Statistics 

All statistics were performed in R version 3.6.0 (R Core Team, 2019). Bacterial taxa 

were rarefied to 25000 reads 100 times using the vegan R package (Oksanen et al., 

2018) and the rounded average used for calculation of richness and diversity indices. 

The same procedure was used for fungal taxa with rarefaction to 10000 reads. The cut-

offs for rarefaction were identified based on evaluation of the read depths of the 

samples and removal of the samples with considerably lower read depths than the rest 

of the data (Salter et al., 2014). The effect of climate treatment, depth and year of 

collection upon diversity was calculated using ANOVA, and the best model chosen 

based on AICc (Mazerolle, 2016). Two-dimensional NMDS ordination on the Bray-

Curtis distances between taxa based on the rarefied data was used to characterise 

community composition. The response of community composition to treatment was 

analysed using PERMANOVA, the homogeneity of dispersion assumption was shown 

to hold at p > 0.1. All figures were plotted using ggplot2 (Wickham, 2016) 

Co-occurrence networks were constructed using the SpiecEasi package in R (Kurtz et 

al., 2015). Bacterial and fungal taxa that appeared in over 50% of the 2017 samples 

were used simultaneously to construct networks that contained intra- and inter-

kingdom co-occurrence relationships for each of the control, warming and drought 

treatments (Tipton et al., 2018). The network was then plotted and its characteristics 

determined using the igraph package (Csardi & Nepusz, 2006). Node degree and 

betweenness were used to identify the key taxa within the network. 

Indicator taxa for the warming and drought treatments were identified through 

analysing the differential relative abundance of taxa by treatment using the DESeq2 

method (Love et al., 2014) and the apeglm shrinkage estimator (Zhu et al., 2018). Year, 
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climate treatment and soil depth were included as additive terms within the DESeq2 

model. The presence of any interaction terms was tested using the likelihood-ratio 

test, and the absence of any taxa responding to interaction term compared to the 

reduced model taken as confirmation that no interaction occurred. 

The impact of depth and treatment on DSE colonisation was modelled using a 

Bayesian regression model with a zero-inflated beta distribution using the brms 

package (Bürkner, 2017). The impact of depth and treatment upon ErM colonisation 

was modelled using the brms package as well, as a cumulative ordinal regression 

model assuming the latent variable to be normally distributed (Bürkner & Vuorre, 

2019). Core identity was used as a random effect, and an interaction between depth 

and treatment was assumed.  

The relative impact of soil pH, EC, soil moisture and temperature on the soil microbial 

community composition was established using multivariate Bayesian regression 

models within brms. Soil moisture and temperature were taken from in situ sensors on 

the day of sampling. Soil temperature is measured at 5 cm depth with a T107 sensor 

from Campbell scientific. Soil moisture is measured as volumetric water content with 

CS616 sensors from Campbell scientific. The numeric predictors (pH, temperature, 

moisture) were first transformed by centring the mean at zero and dividing by twice 

the standard deviation so they were on a similar scale to any binary predictor. Models 

were compared using leave-one-out cross validation to estimate pointwise out-of-

sample prediction accuracy (Vehtari et al., 2017). For the models predicting NMDS 

scores the models were fit with both NMDS scores as response variables 

simultaneously so that the residual correlation between the two could be estimated. 

Data from 2017 only was used within these models due to the absence of pH and EC 

values from 2003. 

 

6.3 Results 

6.3.1 Microbial diversity 

There were 8818 unique sequences from a total of 4,514,220 reads returned by the 16S 

primer, of which 8673 were matched to bacteria and 138 to archaea. There were 2539 
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unique ITS sequences from a total of 5,711,663 reads, of which 2377 matched to fungi. 

The bacterial data was rarefied to 25000 reads, and the fungal to 10000 reads. This 

resulted in 28 samples of the 93 failing to amplify enough fungal DNA for inclusion in 

the analysis, of which 12 samples had 0 reads and 14 samples had less than 200 reads. 

Of the failed samples, 15 were from warming plots, compared to 5 and 8 from control 

and drought plots respectively. The median read depth of successfully amplified 

samples was 41110 for bacteria (Q1: 35623, Q3:50001), and 87494 for fungi (Q1: 43626, 

Q3: 112151). 

The diversities of the fungal and bacterial communities varied across the different 

treatments, soil depths and the two sampling periods, however there was limited 

consistency in the response. There was a significant effect of soil depth, sampling year 

and climate treatment upon both bacterial and fungal richness (p = 0.0004 and R2 = 

0.30; p < 0.0001; R2 = 0.68 respectively; Figure 6.1). The impact of depth or treatment 

did not change by year for bacteria but did for fungi (ΔAICc < 2). The response of 

bacterial and fungal Shannon and inverse Simpson diversity indices to depth, year and 

treatment followed the same patterns as richness (Appendix H Figures 1 and 2). 

Overall, while the models found significant impacts there was no conclusive pattern of 

the effect of treatment, depth or year on microbial diversity. 

 

Figure 6.1: Change in bacterial richness per 25000 rarefied reads (a) and fungal richness per 10000 rarefied 

reads (b) with soil depth (topsoil, subsoil), year (2003, 2017) and treatment (Control, Drought, and 

Warming).  
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6.3.2 Microbial community composition 

  

Figure 6.2: NMDS of the fungal (left) and bacterial communities (right) for 2003 (circles) and 2017 (triangles). 

Note that changes by treatment are more evident for the 2017 samples than the 2003. Results are 

shown split by depth for graphical clarity only. Topsoil is shown in the upper panels, transition zone in 

the centre and subsoil in the lower panels. Control = green, drought = purple, warming = orange. 

The microbial community composition was impacted by depth and treatment in both 

sampling periods, with a clear separation by depth and some separation by treatment 
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(Figure 6.2). The warming subsoil shows greater similarity to the topsoil than to the 

subsoil of the control and drought plots. There was a significant effect of both soil 

depth and climate treatment upon both bacterial and fungal composition in 2017, but 

no significant interaction (Bacterial PERMANOVA: R2 = 0.219, p = 0.001 (Depth), p = 

0.002 (Treatment), p = 0.12 (Interaction); Fungal PERMANOVA: R2 = 0.186, p = 0.001 

(Depth), p = 0.002 (Treatment), p = 0.38 (Interaction)). The 2003 samples were 

largely clustered within the 2017 samples, with less visible impact of depth and 

treatment. However, at the phylum level there was limited change by depth, treatment 

or year for both bacteria and fungi (Appendix H Figures 3 and 4). The majority of 

fungi were not able to be assigned to any trophic mode and there was limited evidence 

of change in trophic modes to treatment (Appendix H Figure 5).  

6.3.2.2 Network analysis 

 

Figure 6.3: Microbial co-occurrence networks for bacteria and fungi together (A), bacteria only (B) and fungi 

only (C). Black links are positive, grey negative connections. The nodes are clustered together according 

to the Fruchterman Reingold algorithm (for graphical simplicity the fungal layout is based on the 

unweighted edges). Nodes are coloured by their preference for different depths: green are topsoil 

specialists, red subsoil specialists and blue transition zone specialists. Data from 2017 only. 
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The nature of the co-occurrence patterns across the microbial data is dependent on 

whether the bacteria and fungi are considered together or separately. There were 161 

bacterial taxa and 54 fungal taxa that appeared in over 50% of the samples, and were 

thus included in the networks (Figure 6.3, Appendix H Figure 6). The network 

construction was run for bacteria and fungi together, bacteria only and fungi only. The 

majority of the abundant microbial taxa included within our network showed a 

distinct depth preference, but no treatment effect of treatment (Appendix H Figure 7). 

There were many links within the joint network that would not have been found if 

bacteria and fungi were only considered separately (123 out of a total 428 links, with 

another 283 within bacteria and 22 within fungi). The bacteria only network had 312 

edges and the fungi only network had 10 edges. The interactions between the different 

microbial communities in our sites act across the kingdom boundaries and ignoring 

across-kingdom interactions changes specific links and overall network stability 

(Appendix H Figure 6).  

6.3.2.3 Indicator taxa 

Analysis of the different relevant abundance of bacterial and fungal taxa in drought 

and warming compared to control treatments revealed a small number of taxa that 

responded strongly to the treatments, with no taxa responding differently to the 

treatment in the different depths or years (Table 6.2, Appendix H Figure 8). There 

were more bacterial taxa that declined under the climate change treatments than 

increased, and over half of the taxa that declined did so under both drought and 

warming. However, in the fungal communities while the warming treatments caused a 

decline in more taxa than increased, there were far more fungal taxa that increased 

under the drought treatment than decreased.  

Table 6.2: Number of taxa that responded to warming or drought treatment compared to control (adjusted p-

value < 0.1) 

 Warming Drought Both 

Bacteria (n=4936) Increase 104 (2.2%) 213 (4.4%) 48 

Decrease 320 (6.7%) 295 (6.1%) 189 

Fungi (n=1704) Increase 99 (5.8%) 167 (9.8%) 42 

Decrease 169 (9.9%) 99 (5.8%) 46 
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Figure 6.4: Heatmap of samples clustered by their transformed similarity according to DeSEq2 analysis of the 

bacterial taxa. On the right the samples are colour coded by treatment and soil depth, the key is on the 

bottom right of the figure. Samples from 2003 are designated by asterisks.  

The subsoil bacterial community strongly separated from the topsoil and transition 

zone communities following the clustering of samples according to the differential 

relative abundance of taxa (Figure 6.4). However there were communities from the 

subsoil of the drought and warming plots in 2003 (3/3 and 1/3 respectively) and the 

subsoil of the warming plots only in 2017 (5/7) that were not within this subsoil 

cluster and instead nested within the topsoil and intermediate layers from both 2003 

and 2017. There was no strong separation of the 2003 and 2017 bacterial community 

composition, with the 2003 communities not forming their own single cluster but 

instead tending to form small nested groups within the 2017 samples. There was no 
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separation of a single subsoil cluster in the fungal communities, however there were 

two sets of communities that separated out from the rest of the data (Appendix H 

Figure 9). These were almost entirely composed of topsoil and intermediate samples 

with the only exception being two samples from the subsoil of a warming treatment 

included in the larger (13-member) cluster. The microbial communities of the subsoil 

are more similar to the communities of the topsoil across the site than to other subsoil 

communities. 

6.3.3 Root fungal colonisation 

The climate treatments impacted overall root biomass and the change in mycorrhizal 

colonisation of roots with depth as well as the overall microbial community 

composition. There was a decrease in root biomass and number of root tips with depth 

(Appendix H Figure 10). Drought and warming had limited effect upon the number of 

root tips and fine root biomass once depth was accounted for (elpd of all models 

within standard errors of each other), but did decrease the overall root biomass (elpd 

difference 3.7 ± 2.2). The rate of ericoid mycorrhizal colonisation also decreased with 

depth, however proportionally more roots were colonised by dark septate endophytes 

at the lower depths. These changes in colonisation with depth were not apparent in 

the warming plots (Figure 6.5, Appendix H Figure 11). Overall, compared to the control 

plots the warming plots had lower rates of fungal colonisation, while drought plots 

had higher rates of ErM colonisation in the topsoil. 
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Figure 6.5: Changes in proportion of each ErM colonisation category with depth. Note that there is overall 

lower colonisation in the warming treatment and higher in the drought treatment. There is also limited 

change with depth within the warming treatment, a slight decrease in the high proportional colonisation 

categories in the control treatment and a larger change within the drought plots. 

 

6.3.4 Impact of soil chemical properties on microbial communities 

The change in pH and EC with depth was altered by the experimental treatment 

(Figure 6.6). Under control conditions pH increases with depth and this remained the 

same in the drought conditions, but within the warming plots there was no change in 

pH with depth. EC was lowest in the subsoil in the control and drought plots, however 

in the warming plots there was no change in EC with depth. However, these 

differences in pH and EC with depth and treatment were limited, with the addition of 

treatment to the model performing equivalently to the model with depth only (elpd 

difference of adding treatment for pH +1.0 ± 3.0, for EC -0.7 ± 1.1). The subsoil of the 

warming plots had similar conditions to the topsoil throughout the site. 
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Figure 6.6: The change in pH and EC with soil depth (T = Topsoil, M = intermediate, S = Subsoil) and climate 

treatments in 2017 

The impact of treatment upon fungal richness was fully mediated by the changes in 

soil physicochemical environment, while bacterial richness was less impacted by the 

change in soil properties. No models did particularly well at predicting the bacterial 

richness, but the best model for investigating bacterial richness had solely climate 

treatment and soil depth as predictors (Bayes R2 = 0.227 ± 0.071), with three other 

equivalent models by elpd (taking standard errors into account) adding subsets of pH, 

EC, moisture and temperature to the predictors. Bacterial richness was lowest in the 

intermediate depth and highest in the drought plots. Fungal richness was impacted by 

the physical properties of the site, with the best model including pH, EC, soil depth, 
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temperature and moisture as predictors (Bayes R2 = 0.651). The model with only 

climate treatment and soil depth as predictors was notably worse than all the other 

models (elpd difference of 3.4 compared to <1 for all other models). Fungal richness 

decreased with depth and increased with EC and pH. There was also evidence for 

decreasing richness with moisture and increasing with temperature. 

The microbial community composition was still impacted by the treatment after 

accounting for changes in soil temperature, moisture, pH and EC. The best model had 

treatment, pH and EC as predictors of bacterial and fungal composition (Figure 6.7). 

The relative impact of pH on bacterial composition was higher than that of EC, while 

the reverse was true for fungal composition. The treatments have resulted in changes 

in the soil physicochemical structure which have impacted the microbial community 

composition, but the impact of treatment is only partially mediated by the measured 

changes in soil chemistry. 
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Figure 6.7: The parameter estimates for the impact of soil depth, EC, pH and climate treatment on bacterial 

(top row) and fungal (bottom row) NMDS scores. The circles are the mean estimate, the thick bars the 

standard error and the thin bars the 90% CI. Data presented is from 2017 only. The impact of depth is 

represented as the impact of the subsoil (DepthS) and topsoil (DepthT) relative to the transition zone, 

and the impact of treatment represented relative to control. 
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6.4 Discussion 

6.4.1 Microbial community response to warming and drought 

Our results show that fungal taxa are more responsive to drought and warming than 

bacterial taxa, with warming altering soil biological and chemical properties 

throughout the soil profile. These impacts are at least partially moderated by changes 

in the soil chemical environment which are likely driven by alterations in soil 

hydrology and the plant community at the site in response to treatment (Domínguez 

et al., 2015; Robinson et al., 2016). We have observed changes in the fungal 

community using both DNA sequencing of the soil and microscopic examination of 

the mycorrhizal colonisation of C. vulgaris roots. This indicates that changes in the 

bulk soil microbial community reflect changes in the functional capability of the soil 

microbiome to interact with plants which could promote biogeochemical cycling 

(Read & Perez-Moreno, 2003; Tedersoo & Bahram, 2019).  

Previous studies on the microbial response to long term climate change have largely 

focused on measuring the microbial biomass response, which is highly dependent on 

the soil type and climate conditions (Ren et al., 2018; Zhou et al., 2018). Drought and 

warming have been found to impact microbial composition more strongly and 

persistently than microbial richness in both short and long term experiments 

(Birnbaum et al., 2019; de Vries et al., 2018; Sayer et al., 2017; Tóth et al., 2017; Yu et 

al., 2018). While we have found significant changes in microbial richness and diversity 

in response to experimental climate change, the impact on composition is clearer and 

more consistent in our results. Changes in composition in response to long term 

drought have been shown in some cases to be driven by changes in the rarer taxa in a 

calcareous grassland (Sayer et al., 2017). This supports our finding that the dominant 

taxa show limited preference for treatment in contrast to their strong depth 

preference. 

6.4.2 The interaction between soil depth and treatment 

A variety of observational studies have shown a distinct difference in microbial 

composition with depth, consistent with our results (Delgado-Baquerizo et al., 2017; 

Griffiths et al., 2003; Serkebaeva et al., 2013; Seuradge et al., 2017). The subsoil is 
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generally less biologically active and shows less seasonal variation in its physical 

conditions and microbial communities (Griffiths et al., 2003). Therefore it is no 

surprise that many studies have found that the topsoil is more strongly linked to the 

aboveground land use and plant productivity (Delgado-Baquerizo et al., 2017; 

Seuradge et al., 2017). However, our results suggest that the impact of climate change 

can penetrate deeper into the soil, impacting soil physicochemical properties, plant-

soil interactions and microbial processes. This change in the stratification with depth 

of physicochemical properties and microbial communities could be linked to the 

distinct change in hydrological behaviour and roots over the course of the experiment 

(Robinson et al., 2016). Our soils are admittedly shallow and the changes with depth 

we have observed are over relatively short distances. However, the results still hold 

relevance for a geographically extensive soil type and are likely to occur in many 

deeper soil types.  

The change in stratification with depth of the soil physical, chemical and ecological 

properties in response to warming may be related to the increased cover of moss in 

the warming plots (Domínguez et al., 2015). Moss acts as a layer of insulation on the 

soil surface, buffering changes in soil temperature and moisture (Turetsky et al., 2012). 

Mosses have been found to reduce evapotranspiration, increase surface infiltration 

and influence the partitioning of heat fluxes (Beringer et al., 2001; Blok et al., 2011). 

The thermal and hydrological influences of moss cover can lead to differences in 

belowground soil microbial communities, changing their biomass and activity 

(Benavent-González et al., 2018; Gornall et al., 2007), with relevance to global 

biogeochemical cycling (Porada et al., 2014). The insulative properties of moss could 

be reducing the magnitude of daily and seasonal heat and moisture fluctuations at the 

soil surface, therefore reducing subtle temperature and hydrological differences 

between the topsoil and subsoil. However, our results indicate that the subsoil is 

becoming slightly more like the topsoil, and not vice versa, which could mean that the 

changes in water infiltration and heat fluxes are leading to increasing penetration of 

water and translocation of chemicals within the soil profile. 
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6.4.3 Evaluating the concept of a bacterial vs a fungal response 

The community composition response to drought and warming we have found shows 

some differences between bacterial and fungal taxa.  However the presence of co-

occurrence links between specific bacteria and fungi suggest that caution should be 

used in interpreting these results as a bacterial response vs a fungal response. While 

the overall abundance and dominance of bacteria and fungi may change in response to 

climate change this obscures changes in fine-scale dynamics which could be creating 

specific drought and warming communities that are composed of a combination of 

both bacteria and fungi. We do find that more fungal taxa respond positively to 

drought and negatively to warming which indicates that the drought microbial 

community could consist of relatively more fungi. This is consistent with previous 

results showing higher tolerance of fungi to drought (Haugwitz et al., 2014). 

Neglecting the inter-Kingdom links could lead to erroneous assumptions about 

microbial community stability, as suggested by work in the human microbiome 

(Tipton et al., 2018). It is possible that the correlations between bacteria and fungi are 

driven solely by changes in environmental conditions and do not represent a true 

microbial interaction, as these co-occurrence networks are prone to this kind of error 

(Carr et al., 2019). However this result does offer an intriguing avenue for future work 

in establishing whether specific inter-Kingdom interactions exist and can influence 

microbial community structure and activity in soils. 

6.4.4 Fungal root colonisation 

Our results from examination of the fungal root colonisation are in agreement with 

previous results that have indicated that ErM and DSE colonisation respond 

differently to experimental warming (Binet et al., 2017; Olsrud et al., 2009). However, 

the treatment responses we found differed from previous results, with Olsrud et al. 

(2009) finding no effect of warming on ErM colonisation after 6 years of treatment in 

a subarctic birch forest. Other results from a Danish heathland with similar 

experimental set-up to our site found that ErM colonisation was lower in the warming 

treatment at 5-10 cm depth compared to drought and control, and that DSE was lower 

at depth in the drought treatments (Arndal et al., 2013). Overall, we found lower ErM 

colonisation in response to warming, however we found higher ErM colonisation in 
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response to drought which is different from Arndal et al.’s results. These contrasting 

results could reflect the difference in duration of treatment or potentially the 

differences in the plant response to treatment. The implications of shifts in 

mycorrhizal type for plant community resilience and biogeochemical cycling in 

response to warming are unclear due to the lack of knowledge on the relative role of 

DSE versus ErM colonisation upon plant nutrient uptake and stress resilience 

(Newsham et al., 2009). However, there are some suggestions that DSE colonisation 

may enable the uptake of organic nitrogen compounds and improve resilience to 

certain stressors (Hill et al., 2019; Newsham, 2011). 

6.5 Conclusions 

We have found that bacterial and fungal community composition and diversity is 

altered by long term drought and warming treatments. The impact of simulated 

climate change is greater after eighteen years of treatment compared to four years. 

The shift in bulk soil community composition is also reflected by a shift in fungal root 

colonisation of the dominant Calluna vulgaris plant species. These changes are at least 

partially driven by changes in the distribution of roots throughout the soil profile and 

changes in the soil chemical environment. In general, fungal taxa appear to be more 

responsive to the climate change treatments than bacterial taxa but the presence of 

cross-domain co-occurrence relationships and sensitive taxa in both domains cautions 

against interpreting our results as a fungal vs a bacterial response. These insights into 

soil microbial community response to drought and warming can inform our 

understanding of what drives differences in soil functional response to climate change. 
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7.1. Introduction 

In this chapter, the experimental work presented in chapters 2-6 is summarised and 

discussed in relation to the common themes and initial objectives of the thesis. These 

were: to evaluate the state of soils in Wales; explore the associations between soil 

physical properties and biological communities; to establish the relative roles of 

physicochemical and biological factors in determining soil biodiversity and to evaluate 

the impact of climate change on soil microbial communities. Detailed discussion of 

the results from the work in this thesis are described in each chapter. Here, I present a 

synthesis of the results in terms of the overall aims of the thesis and the wider 

implications of the findings. 

7.2. Synthesis of findings 

7.2.1 Evaluating the state of Welsh soils 

The state of key soil physicochemical and biological parameters in Wales have been 

presented across this thesis, including an overview of soil physicochemical properties 

in Chapter 2 and description of the microbial communities in Appendix A. Some of 

these results were consistent with expectations, such as the range of soil carbon, pH 

and nitrogen across Welsh soils which were consistent with previous surveys 

(Reynolds et al., 2013). Others were more unexpected, such as the high level of soil 

surface water repellency and increasing soil fungal diversity with land use intensity. 

Wales is dominated by grassland ecosystems, with the majority of the sites surveyed 

being improved grassland, neutral grassland or acid grassland. These grasslands 

showed a clear gradient in soil properties including pH, carbon, nitrogen and 

microbial diversity. There was also a significant proportion of bogs and heathlands 

which had very high carbon, low pH and low microbial diversity. We found no majorly 

concerning trends in soil quality across Wales at a national scale. For example, we saw 

that the majority of our soils were within nationally accepted pH limits for habitat 

support (Chapter 2). However, one important caveat is that the measurements of soil 

properties presented within this thesis are all limited to the topsoil (0-15cm). The 

topsoil is the most biologically active section of the soil, however it is clear that 

omitting the subsoil from an evaluation of the state of Welsh soils will majorly impact 



 

216 

 

conclusions drawn on soil properties that are more related to subsoil properties such 

as carbon storage and evidence for P saturation (Simo et al., 2019). Other soil 

properties are more important at the soil surface, such as microbial community 

activity and soil water repellency.  

Throughout this thesis the importance of pH and carbon within Welsh soils has 

become apparent, as we found how strongly they correlate with other soil properties 

such as nitrogen and bulk density in Chapter 2, how they drive physical properties 

such as soil water repellency (Chapter 4) and their importance in determining soil 

microbial dynamics (Chapter 3 and Appendix A). This sits well with the use of soil pH 

and carbon as key soil quality indicators that is common across research and 

monitoring schemes (Bünemann et al., 2018). The importance of these in Welsh soils 

may also be related to the wide range of carbon and pH in our soils, with some highly 

acidic and carbon-rich soils present. Other factors such as salinity are consistently low 

in Wales and could be expected to play a dominant role in determining soil quality 

and health in more arid environments. Wales appears to be consistent with other 

temperate environments in which the clear soil quality indicators are pH and carbon. 

It should be noted, however, that few calcareous (high pH) soils were evaluated in this 

survey. 

In general, we found that pH and carbon showed some trend with land use in Wales, 

with higher pH and lower carbon in more intensive grasslands. This made it difficult 

to separate out the impact, if any, of land use upon soil microbial communities and 

physical properties once changes in pH and carbon were accounted for. In the case of 

water repellency the impact of land use was nonsignificant once changes in plant, 

microbial and soil physicochemical properties were accounted for, with the notable 

exception of arable systems. Wales has proportionally few arable farms, with the vast 

majority of the Welsh landscape being under pasture (Welsh Government, 2019). The 

relatively low intensity of farming across Wales limits the comparability of our results 

to analysis of the high intensity arable farming more common in the South-East of 

England and other parts of Europe (Maskell et al., 2019). Analysis of the impacts of 

agriculture and woodland planting upon soil quality specifically is limited due to the 

smaller sample population of those habitats within the analysis and limited range of 
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environmental conditions. However, there are indications that arable systems are 

different to grasslands for at least some soil properties and while our analysis found 

limited evidence of woodlands being qualitatively different for soil physicochemical or 

microbial properties there is evidence that mesofaunal communities are different in 

woodlands (George et al., 2017). Further investigation of the impacts of ongoing arable 

intensification and woodland planting within Wales could benefit from comparison to 

the wider UK and increased focus upon these transitions.  

7.2.2 Factors driving Welsh biodiversity 

Throughout this thesis it has become apparent that soil microbial diversity in Wales is 

driven largely by physicochemical properties such as pH and carbon. There is a clear 

non-linear response of bacterial richness to pH, made most apparent in Chapter 5. 

Below a pH of around 5 there is a dramatic decline in bacterial richness, with levels 

being fairly stable from pH 5 to 7. There is also evidence for a similar pattern in fungal 

richness, however this is less pronounced. Previous research has shown that there is a 

transition point in microbial activity and carbon use efficiency around pH 5.5, which is 

related to the point at which aluminium becomes soluble (Jones et al., 2019). This 

strongly suggests that the properties controlling soil dynamics differ at the different 

pH values. It is of particular interest due to the gradual recovery of acidification 

occurring across the UK (Reynolds et al., 2013), with a continuing trend of fewer sites 

at low pH found in our analysis in Chapter 2. The non-linearities in response to pH 

could result in the presence of thresholds and tipping points, meaning that the 

response to global change would involve difficult to predict instabilities and 

transitions. The majority of analyses, including those in this thesis, model microbial 

and functional response linearly which could result in difficulties in extrapolation and 

prediction. 

The response of soil biodiversity to land use does appear to be largely driven by 

response to soil pH which varies considerably by habitat. The bacterial, fungal and 

protistan communities across Wales appeared within our analysis to be different in 

neutral/improved grassland and arable compared to acid grassland, heathland and 

woodland. The only analysis within this thesis that found an impact of land use upon 

the microbial diversity, even after accounting for pH, was in Chapter 3, with a binary 
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predictor separating the improved and unimproved habitats. However, this could have 

been driven by the non-linearity in the pH response which was not incorporated into 

that structural equation model. Overall, the impact of land use upon the soil microbial 

community appeared to be driven by soil physicochemical parameters for diversity 

and additionally, potentially plant community dynamics for composition. This could 

in part be due to the low frequency of arable and forested sites in our data which 

might be expected to have different factors driving soil biodiversity. The fact that 

arable sites had lower water repellency, even after accounting for soil physicochemical 

and biological parameters, indicates that these types of sites may be qualitatively 

different. Comparing soil biological communities and water repellency is of particular 

interest as they have both recently been shown to respond to multiple ecosystem 

multiplicatively rather than to the identity of each stressor, unlike many other soil 

properties such as respiration and aggregate stability (Rillig et al., 2019). So while pH 

appears to be driving microbial diversity and composition, rather than land use, we 

cannot rule out the possibility that extreme land use types will have different 

microbial communities in a way that is not dependent on pH alone. 

Within this thesis the descriptions of the microbial communities have been based 

upon DNA metabarcoding of regions general to bacteria, fungi or overall eukaryotes, 

which offers a description of the composition of microbial communities. This does not 

provide any measurements of microbial biomass and is limited in describing the 

functional variety of the soil microbial community. The analysis of amplicon 

sequencing data requires several decisions made within all stages of analysis which 

could have considerable effects on the downstream results (Pollock et al., 2018). We 

found it difficult to explain variation in the fungal richness, with maximum R2 values 

of ~0.3 for richness in Chapters 3 and 5, which may have been related to the choice of 

the ITS1 region for sequencing as opposed to the ITS2 or 18S regions (Blaalid et al., 

2013; George et al., 2019). Alternatively, the difficulty in explaining fungal richness 

may be due to it being a largely random variable and that fungal composition, for 

which we explained a much greater proportion of variation, is more related to actual 

soil processes. As another example in differences in metabarcoding methods, over the 

past few years there has been a switch from analysing amplicon data based upon an 
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OTU approach (usually clustering at 97% similarity) to an ASV approach (identifying 

sequence variants at 100% similarity accounting for error rates). The ASV approach 

has been found to improve estimates of microbial richness and is theoretically easier 

to compare across studies (Callahan et al., 2017, 2016). Within this thesis the GMEP 

microbial data presented in Chapters 3-5 was analysed using an OTU based approach 

while the Clocaenog microbial data in Chapter 6 was analysed using an ASV approach. 

This could impact the comparison of the results, particularly the analysis of microbial 

richness which are known to be more sensitive than composition to changes in the 

bioinformatic pipeline. 

Throughout this thesis we have seen that the plant community across Wales is both 

related to the soil system and other environmental variables such as climate. In 

Chapter 4 we observed that the average stress tolerance of the plant community was 

closely related to soil carbon and both drought and precipitation. In Chapter 5 we saw 

that the plant community at our sites was influenced by climate, soil physicochemical 

parameters and to a lesser extent, spatial distance between sites. We also observed 

that the plant community correlated with bird, butterfly, bee and hoverfly 

communities in diversity, composition and specific inter-taxon relationships. These 

results suggest that the plant community plays a key role in connecting the below- and 

above-ground ecological communities. Overall ecosystem resilience and service 

provision is dependent on multiple components of the ecosystem, the majority of 

which are associated with the plant community ranging from bird diversity to soil 

stability. 

7.2.3 Associations between soil physical properties and microbial communities 

Throughout this thesis we have seen that physical, chemical and biological properties 

in soils are closely interlinked. The bacterial, and to a lesser extent fungal, 

communities responded to soil textural diversity and composition in the analysis 

within Chapter 3. The strong relationship found between heterotrophic protistan 

communities and bacterial communities in Chapter 5 indicates that protistan 

communities are likely to also be affected by soil texture. Soil texture is a relatively 

fixed aspect of soil structure making it unlikely to be affected by either the plant 

community, represented in Chapter 3 by habitat, or the soil microbial communities. 
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However, biological communities not only respond to changes in the soil 

physicochemical environment but can influence it themselves. In Chapter 4 we 

observed that soil water repellency, which controls the movement of water through 

the soil profile, is affected by plant, bacterial and fungal communities. In particular, 

the unexpected full mediation of the relationship between pH and water repellency by 

the bacterial community demonstrates the important role of microbial communities 

in determining soil physicochemical parameters and not just responding to them.  

The work within this thesis is largely observational and thus the causal relationships 

suggested must be interpreted cautiously. The statistical techniques used in this thesis 

attempt to rate the likelihood of causal relationships, however issues such as the 

presence of error in measurements can confound the identification of causal 

relationships. One particular example is that due to the single time point of 

measurement and the different levels of variation over time in the different properties, 

one property may in fact represent an integration over time of another property. For 

example, as the bacterial community composition is strongly responsive to soil pH and 

if the bacterial community changed on a longer timescale than pH then bacterial 

composition would be reflective of not just the current pH but past pH as well. 

Therefore, any other property that we measured that was responsive to both current 

and past pH could be more strongly correlated to bacterial composition than pH itself. 

This particular example is unlikely as bacterial communities change over time more 

quickly and drastically than pH (Bardgett & van der Putten, 2014). However, without 

in depth knowledge of the mechanistic relationships or measurements at multiple 

time points distinguishing which causal direction is the case remains difficult. 

Identification of causal linkages within soil science is particularly difficult due to the 

presence of positive and negative feedbacks. Soil is an incredibly complex medium 

with many different processes and ecologies occurring at any one time. Plant 

communities interact with soil microbial communities in a way that is dependent on 

the soil environment, and then go on to modify the soil environment. Whether or not 

soil can ever be considered to reach a quasi-steady state can be dependent on the 

timeframe under consideration and the range of different properties still deemed to be 

one state. Within the Clocaenog experiment presented in Chapter 6 and Appendix B 
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there has been evidence put forward for the shift from one state to another following 

an external drought event (Robinson et al., 2016), however it is now undergoing 

gradual recovery over years or decades to a hydrology state more similar to that of 

twenty years ago. This importance of timeframe and inherent variability should be 

considered when applying results to the wider landscape as the timeframe of ~ 5 years 

inherent in many policy decisions is both far longer than many soil biological 

processes and far too short for evaluating soil health trajectories. 

7.2.4 The impact of climate change on soil properties and communities 

The climate in Wales is predicted to involve hotter, drier summers and warmer, wetter 

winters (Murphy et al., 2018). The recent exposure of Wales to increased drought is 

associated with changes in the dominance of stress tolerant plants and altered soil 

physicochemical properties, which then affected soil microbial communities and water 

repellency (Chapter 4). Within the Clocaenog experiment examined within this thesis 

we have shown that summer drought and warming impact microbial communities 

within heathland ecosystems (Chapter 6). This appeared to have a knock-on effect 

upon soil respiration, with summer warming in particular resulting in greater loss of 

soil carbon (Appendix B). The experimental manipulations at Clocaenog were limited 

in magnitude of treatment but have been ongoing for 20 years. Combining these 

experimental manipulations with the observational results across Wales gives us 

greater confidence in our predictions that soil microbial communities within Wales 

will change in response to climate change and that this will have implications for soil 

quality. 

The response of different organisms and soil physicochemical properties to climate 

change varies. For example, within Chapters 3 through 5 we saw that the plant 

community responded to climatic variables while the soil microbial community did 

not. The impact of climate change upon soil microbial communities would be 

mediated by soil physicochemical properties and plant communities. However, 

different aspects of the ecosystem could respond to different aspects of climate, for 

example the plant community stress tolerance showed positive responses to both 

precipitation and drought while soil carbon responded positively and negatively 

respectively in Chapter 4. This divergence in properties and organisms in response to 
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external forces within an ecosystem can reduce resilience to change and make the 

overall ecosystem more vulnerable to other external stressors. The differential 

responses not only destabilise ecosystem connectivity but also leads to issues with 

establishing mechanistic relationships in semi-natural ecosystems. For the purposes of 

understanding the mechanistic underpinnings of soil science and the predicted 

impacts of interventions it is essential to understand if the systems we are basing our 

assumptions on can be extrapolated to other sites. 

Not only is the average climate of Wales changing but so too are the frequency of 

extreme events. In chapter 4 we saw that the plant communities were responsive not 

just to the average precipitation but also the frequency of dry spell events. The 

extreme drought of 2003 had a large impact on the Clocaenog site, causing a 

transition between states with recovery still ongoing (Robinson et al., 2016). This 

extreme event, and the differing resilience of the plots undergoing different 

treatments, may be partially responsible for the changes in respiration and microbial 

communities between treatments and over time (Appendix B; Chapter 6). Gradual 

climate change could reduce the resilience of soil and ecosystem properties to extreme 

events. Exposure to previous stress could reduce ecosystem connectivity as different 

components vary in response time and adaptability. In particular, the fact that climate 

change is occurring concurrently with various land use changes, pollution and other 

anthropogenic pressures could lead to greater impacts upon soil and ecosystem health 

as multiple stressors often act synergistically or in other hard to predict ways.  

7.2.5 The implications of the results 

Specific recommendations from this thesis to policy and land management include 

clear separation of policy goals for high carbon upland soils vs lowland agricultural 

soils, the re-evaluation of the soils trigger-values used by the Environment Agency 

(Bhogal et al., 2008), and reconsideration of the best soil microbial indicators for soil 

health. Priorities in managing soil and ecosystem health vary over time and between 

different stakeholders. Even assuming we can agree on which functions and services 

we wish our soils to provide, there are still major gaps in our knowledge of which soil 

properties underlie these at a policy relevant landscape scale (Kibblewhite et al., 2016). 

Across this thesis we have found that pH and carbon are important to many other soil 
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physicochemical and microbial properties, yet there is an underlying assumption that 

the other soil properties we have measured are useful. Discussion of the important 

functions within soils must consider not only what kind of functions we are interested 

in but also what can be measured at regional or national scale. 

In general, land management policy is concerned with the ecosystem services that 

soils provide to humanity and the natural capital that underpins the delivery of these 

services. Appendix C reviews the soil ecosystem services concept: exploring how soil 

properties and processes underpin ecosystem services; how to measure and model 

them; and to identify the wider benefits they provide to society. There have been 

many attempts to define the wide range of ecosystem services that soils provide, as 

well as identify the properties that are relevant to those services (Dominati et al., 2010; 

Maseyk et al., 2017; Robinson et al., 2013). However, some have criticised the 

ecosystem services and related concepts for their anthropogenic focus with 

alternatives including the concept of soil care having been suggested (Appendix C; 

Puig de la Bellacasa, 2015). Translating scientific results into specific policy and 

outreach initiatives must involve careful consideration of the intended and potential 

unintended consequences. The language that is used as well as the results that are 

presented can impact the eventual outcome. 

Soil quality, health and function are often used terms but surprisingly difficult to 

define (Bünemann et al., 2018; Döring et al., 2015). All, however, are concerned with 

ranking soils and providing an indication of what is bad and what is good. Soils 

provide a wide range of functions and services that vary considerably between soil 

types. We have seen in Chapter 2 how the upland bogs and heathlands of Wales are 

very different from the lowland arable and improved grasslands in their characteristics 

and the functions they can support. Combining these very different soils into one 

index of good vs bad, or as in many cases bad vs worse, is a dangerous 

oversimplification of the state of soil health. What constitutes a healthy or good 

quality soil varies depending on the metric considered and the presence of trade-offs 

in soil functions making it impossible to optimise all soils in the same way. For 

example, in Chapter 4 we have proposed that soil water repellency may increase 

ecosystem resilience to stress, yet in tilled agricultural systems water repellency has 
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been viewed for decades as an issue for efficient crop growth. There is a requirement 

to maintain a range of soil types, each of which should be managed in a way to 

optimise the provision of the functions it is best qualified to provide. Soil health 

should be defined in the context of the potential soil functionality in any given 

environmental and land use situation. This is particularly important due to the 

inherent trade-offs between different ecosystem services. Management of soil 

resources and health needs to consider the optimal mosaic of soil types at the 

landscape scale and then offer appropriate interventions to maintain each element of 

the landscape at maximum health.  

National monitoring of soil quality requires not only trajectory information but 

information on the impacts of changes in soil properties, which can easily be inferred 

by the use of threshold values. The current pH threshold for sites being too acidic in 

mesotrophic grassland and too neutral in acid grassland is 5 (Bhogal et al., 2008). Our 

research indicates that this may need to be raised to 5.5 on the basis on the shift in 

microbial community, in particular in combination with other research on soil 

functions in response to pH and the backdrop of reducing acidity across the UK 

(Evans et al., 2008; Jones et al., 2019; Reynolds et al., 2013). The increasing extent of 

arable cropping in Wales raises concerns about the use of fertilisers on Welsh soils, as 

around 75% of mesotrophic grasslands are already over the appropriate limit for 

available phosphorus. Careful controls of fertiliser use are required to prevent the 

worsening of nutrient status in Welsh soils. The results from Chapter 4 also suggest 

that the increasing agricultural intensification of Welsh soils could have negative 

impacts on soil hydrological behaviour. Our interpretation of the link between plant 

stress tolerance and water repellency is that water repellency could positively impact 

ecosystem resilience, and that in this era of ever-increasing stress the balance between 

ecosystem productivity and resilience needs to be managed carefully.  

Despite recent initiatives promoting soil microbial diversity as a key indicator for soil 

monitoring programmes we did not find good evidence that microbial richness 

specifically should be a management priority (Stone et al., 2016). We did however find 

evidence that microbial composition can impact soil functions and suggest that we 

should refocus the discussion away from diversity when discussing the importance of 
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soil microbiota. Soil biodiversity is itself a soil function due to the potential for 

isolation of useful antibiotics and other substances (Ling et al., 2015). However, the 

majority of soil management is focused upon managing for other services such as 

carbon storage, water filtration and crop production. Within our analyses bacterial, 

fungal and heterotrophic protistan richness was strongly affected by soil pH. This 

makes it difficult to manage separately from the many other soil functions determined 

by soil pH and we found a negative relationship between soil carbon and bacterial 

richness once pH was accounted for (Chapter 3). Managing soils in order to increase 

microbial diversity may mean reducing carbon storage. Also, the measurements of 

microbial richness are dependent on the laboratory methodology and bioinformatic 

pipeline to a much greater extent than microbial composition (Callahan et al., 2017; 

Xue et al., 2018). Therefore, measured microbial diversity may pose little relation to 

the true soil diversity and is difficult to compare across studies. In this thesis we did 

find that microbial composition was related to soil functions such as water repellency 

while microbial richness was not (Chapter 4) and that microbial composition 

responded more consistently than richness to experimental drought and warming 

(Chapter 6). We also identified indicator taxa for specific ecosystems, plant 

communities and climate change responses (Chapters 5 and 6). Therefore, we suggest 

that biodiversity is an inappropriate metric and term for describing the importance of 

soil microbial communities due to its focus on the number of taxa rather than their 

identity. We propose that soil microbial composition should be the focus of future 

monitoring schemes and evaluation of soil health. 

7.3. Future work 

Defining soil function, health and quality is difficult due to the inherent uncertainties 

in the concepts, differences in interpretation and use, and the multidimensional 

nature of the soil system. Some authors have recently been applying the 

multifunctionality approach to measuring ecosystem and soil health, whereby each 

measured function is combined into a single score. This can then be compared to land 

use or biodiversity to infer the impacts of these on ecosystem quality, and in some 

cases biodiversity of different trophic levels has been combined in a similar manner to 

create a multitrophic diversity index (Soliveres et al., 2016). The breadth of the data 
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presented through Chapters 2 through 5 could allow us to perform a similar analysis; 

in particular evaluating whether the combination of functional properties and trophic 

levels obscures important relationships and trade-offs between functions. The wide 

range of habitats within this dataset would allow us to evaluate whether the same 

ecosystem properties drive multifunctionality in grasslands vs forests vs heathlands. 

This is particularly important for predicting future response to change and informing 

policy. 

The aim of national monitoring schemes is to repeatedly measure sites to estimate 

national-level change. The data presented here in Chapters 2 through 5 represents a 

starting point for future surveys which will be able to evaluate if national soil health 

follows the trajectory required for commitments to sustainable growth. Following the 

future surveys, we will be able to evaluate if more soils are within the thresholds for 

soil health shown in Chapter 2 and whether the overall trends in soil carbon across 

Wales are going to meet the targets of the 4 per mille initiative. We will also be able to 

evaluate specifically if the soils in the uplands are losing carbon in response to climate 

change as predicted from the long-term climate change experiment (Appendix B). 

Changes in land use are occurring in conjunction with climate change, and the design 

of this survey could mean identification of whether the agri-environment scheme in 

Wales is helping to improve ecosystem health.  

The resurveying of the sites within the GMEP monitoring scheme also allows us to 

identify sites that have changed with respect to their land use or plant community and 

measure the impact this has on soil biodiversity and health. There have been repeated 

land use surveys of the UK, which gives great opportunities for evaluating the impact 

of historical land use upon soil health. Legacy effects of agriculture and urban areas 

could be limiting the functionality of soils at various sites, although with the trend for 

increasing urbanisation and expansion of agriculture, the areas which have been left to 

rewild are few which may mean monitoring data will be unable to yield meaningful 

trends. Evaluating more detailed information on the plant community could allow 

demonstration of any potential lag effect as soils and plants change along the land use 

intensity spectrum. This national scale data could be used in conjunction with 
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experimental and more detailed approaches to predict future responses to agricultural 

intensification or rewilding. 

Future change in climate will not only impact overall average properties but also the 

frequency of extreme events and it is the impacts of the combination of these that are 

particularly difficult to predict. The importance of drought events in determining soil 

microbial response and quality was shown in this thesis. In Chapter 3 the impacts of 

dry spell events upon the plant community and soil properties was demonstrated even 

once overall precipitation changes were accounted for. The shift over time in 

Clocaenog may also have been related to an extreme drought event in the early 2000’s 

(Robinson et al., 2016). We require further investigation of the impact of extreme 

events upon soil quality and biodiversity, examining the role of flood and drought 

events upon national scale monitoring data as well as experimental approaches. 

Changes in the frequency of other extreme events, such as the reduction in frost days 

and snow cover should also be investigated for their potential impact upon soil health. 

Across the UK we have detailed information upon the extreme weather events of the 

past decades along with repeated ecological monitoring data which could be 

combined to analyse the ecosystem response to extreme events and how it varies by 

habitat. The variation in resilience and resistance to extreme events between the 

different components of the ecosystem must be examined and accounted for in 

predictions of the stability of future ecosystem health in the short and long term. 

Stability of the current soil system is not only related to how responsive each 

component of the system is to external drivers but also the presence of non-linearities 

and potential alternative states. Within Chapter 5 we saw that the response of soil 

microbial diversity to pH is non-linear. The presence of this transition point at ~ pH 5 

could make ecosystems change suddenly in functionality and health in ways that are 

more difficult to predict. These transition points in biodiversity and key soil functions 

such as nitrification and carbon use efficiency need to be fully verified and tested in 

order to inform monitoring and policy. In Chapter 2 we saw that there are national 

level trigger values for pH and other soil properties which are related to soil health 

(Bhogal et al., 2008). The exact response of soil functioning to moving across these 

thresholds is still unclear, particularly at field and regional scales. Therefore, more 
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experimental and modelling approaches are required to analyse the potential impacts 

of such transitions to ecosystem health particularly in relation to the stability of any 

such transition. 

Throughout this thesis we have used many different assumptions on the mechanisms 

underlying the soil processes we have measured to constrain our analysis. Many of 

these have been tested either only at a qualitative level or not at all. There have 

recently been attempts to inoculate soil microcosms with different microbial 

communities to directly measure the impact of different microbial communities upon 

soil processes (Maron et al., 2018; Sergaki et al., 2018). This offers intriguing 

possibilities in answering various questions, e.g. the relative role of plants vs soil 

microbes in determining community assembly. This could help inform interpretation 

of Chapter 5, in which it was assumed that plants determine soil microbial 

communities due to the relatively long-lived nature of plant communities. However, 

despite their relatively short lifespans (<1 year) differences in soil microbial 

communities can persist for hundreds of years due to persistent differences in soil 

physicochemical properties (Diedhiou et al., 2009). These persistent differences in soil 

microbial, and physicochemical, properties could be determining plant community 

dynamics and experimental approaches could help disentangle these interrelated 

drivers. 

The nature and direction of the relationships between plant, microbial and 

physicochemical processes were analysed only simplistically within this thesis. For 

example, the assumptions in Chapter 4 were that the plant and microbial community 

produce hydrophobic compounds that determine water repellency and not that water 

repellency influences the plant and microbial communities. This requires testing, in 

particular the finding that stress tolerance of the plant community may be related to 

water repellency. The exudates produced by plants of differing stress tolerance under 

different stresses should be examined for their hydrophobic and nutrient containing 

properties. These types of complicated interactions between biological, chemical and 

physical properties in response to external and internal drivers are both difficult and 

essential to understand. The potential role of chaotic, unstable dynamics in 

determining soil properties and health requires further investigation. Microbial and 
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physical structure of the soil underpins soil health but is continually changing and 

dynamic. Repeated measurements of soil microbial community and physical 

properties at a site like Clocaenog would increase our understanding of the role of 

seasonal and shorter-term processes in driving soil dynamics. Ideally these analyses 

should be repeated across a range of ecosystem types, in order to understand the 

differences in dynamics between grasslands, woodlands and heathlands. 

Understanding changes over time in conjunction with mechanistic understanding of 

the processes is necessary for predicting future soil stability and health. 

Soil physical structure is dynamic and difficult to measure. Within this thesis we have 

presented broad brush, sample scale measurements such as bulk density and water 

content (Chapter 2), as well as more detailed information on the textural composition 

of the soil (Chapter 3). There are other methods of analysis of soil structure which can 

offer more detailed information on soil mineral composition, pore connectivity and 

aggregate structure, including water release curves and X-ray CT scanning (Helliwell 

et al., 2013; Rabot et al., 2018). These could be used to analyse the impact of plant and 

microbial exudates upon soil water movement and aggregate stability. This analysis 

could also be used to establish whether the correlations we observed in Chapter 3 

between different sizes of soil particles and microbial taxa relate to those particles 

being associated with different mineralogies, aggregate sizes or physical areas of the 

soil. They could also be used to better link microbial properties to soil function, as soil 

structure underpins essential functions such as water filtration and carbon storage. 

Within particularly organic soil similar analyses could be undertaken linking microbial 

taxa with specific types of organic material using compound-specific analysis or 

similar methods (e.g. pyrolysis-mass spectrometry, Fourier-transform ion cyclotron 

resonance mass spectrometry). Understanding the role of soil structure as a dynamic 

property in determining microbial diversity and function is an essential link in 

evaluating the impacts of future change on soil health. 

The methods used to describe the soil microbial community are ever improving and 

understanding the strengths and limitations of each method still developing. Even 

within the DNA metabarcoding methods used within this thesis there is still 

uncertainty of the importance of the bioinformatic pipeline in determining the results 
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(Callahan et al., 2017). The difference between the use of an ASV vs an OTU approach 

within national-scale monitoring and particularly under the range of abiotic 

conditions which affect DNA recovery and quality requires further evaluation. Also, 

the ability to link to functional microbial processes is limited which is why techniques 

such as shotgun metagenomics are increasing in use (Knight et al., 2018). 

Metagenomic techniques allow analysis of specific genes or taxa that are important to 

key functions and can incorporate all organisms within the soil for a more 

comprehensive evaluation of the relative importance of prokaryotes, protists, fungi, 

animals and viruses in soil health. Application of metagenomic, metatranscriptomic, 

metaproteomic, and metabolomic techniques in evaluating soil microbial function 

could lead to much greater understanding of soil function across Wales and the 

significance of the microbial response to experimental warming presented in Chapter 

6. 

The methods applied to the analysis of the microbial data across this thesis are in no 

way comprehensive and there is further information to be gained from the application 

of different methods, such as phylogenetic analysis. Phylogenetic information on the 

relatedness of different microbial taxa can be combined with species diversity 

approaches based upon Hill numbers to create new metrics that provide a better 

characterisation of the shifts in microbial composition in response to environmental 

change (Chao, Chiu & Jost, 2010, 2014; McCoy & Matsen, 2013). However, applying 

these approaches to metabarcoding studies requires consideration of the fact that 

differences in sequence abundance between taxa are unlikely to relate to differences in 

the actual abundance of the taxa (Amend, Seifert & Bruns, 2010; Nguyen et al., 2014). 

There are an ever-increasing number of statistical methods for analysing microbial 

metabarcoding data that can take into account differences in read depth across 

samples and various sample meta-information which could provide new insight into 

microbial communities (e.g. Harrison et al., 2020; Ovaskainen et al., 2017; Sankaran & 

Holmes, 2019). Further work is required to evaluate the most effective way to bring 

together all of the information gained from metabarcoding studies of soil microbial 

communities in order to evaluate their response and relevance to global 

environmental change. 
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Evaluation of the relevance of this work to the wider world requires comparison to 

other sites and regions. The site of our long term climate change experiment analysed 

in Chapter 6 and Appendix B is unusual in the amount of carbon it has lost in 

response to the warming treatment (Crowther et al., 2016; van Gestel et al., 2018). 

Currently we do not understand what drives these differences in soil respiration 

response to warming, although suggestions have been made that soil biological 

communities could be important (Ren et al., 2018; van Gestel et al., 2018). Comparison 

with other sites which have lost far less carbon could provide valuable insights into the 

mechanisms, biological or otherwise, which are driving these differences. Increasingly, 

there have been more studies evaluating change in soil microbial communities in 

response to long term climate change (e.g. Birnbaum et al., 2019; Sayer et al., 2017) 

which offer more opportunities for meta-analyses.  

The work within this thesis has focused on the soils of Wales and there are 

opportunities to compare the results with the soils of different regions to evaluate the 

wider validity of the results. Within the UK, the Countryside Survey has multiple years 

of field survey data with similar spatial structure, most recently from 2007, which 

could offer insight as to whether the results we have found also occur in the more 

intense arable soils of the South-East of England and the extensive peatlands in the 

North of Scotland (Reynolds et al., 2013). Across the EU the LUCAS field survey 

follows a similar structure to that of the Countryside Survey and GMEP and the results 

could be used in a similar manner to evaluate soil health across Europe (Orgiazzi et 

al., 2018). All of these surveys have also begun to analyse the soil microbial 

communities from their sites, offering new opportunities in understanding biological 

dynamics and quality across Europe. 

The examples provided above are of comparable data sources to those within the 

thesis, however there are great gains to be made by the combining of different types of 

data to further soil and ecological understanding. The increasing use of citizen science 

to gather data on species occurrence, land use and even soils data provides a high 

density of data that is often difficult to quality control and analyse. Even within 

comparison of different scientific projects it can be difficult to compare results from 

different methods of analysing ecosystem properties, hence why there have been 
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recent efforts to standardise measurement methodology on climate experiments 

(Halbritter et al., 2019). However, there are recent advances in developing statistical 

techniques to combine data sources in ways that greatly increase the power of 

detecting ecological change (Isaac et al., 2019). While it may be easier to motivate 

citizens to gather data on the presence of birds than the quality of the soil these 

principles hold in combining a variety of data sources.  

7.4. Concluding remarks 

Throughout this thesis, in addition to soil forming factors such as parent material, 

climate and relief, we have seen the importance of soil structure, microbial activity 

and plant communities in determining overall soil characteristics and ecosystem 

functioning. We have seen how the range of soil types across Wales vary in their 

physicochemical and biological characteristics and linked these to the functions and 

services they provide. The strong correlation between pH and many soil functions 

including carbon storage, microbial composition, and hydrological behaviour shows 

how key soil indicators can be used as a crude measure of soil health. However, we 

have also shown that not all soil health indicators correlate with each other and 

therefore that management decisions must prioritise certain functions over others. We 

have found that soil microbial community composition and diversity is responsive to 

both soil structure and plant communities, and that greater understanding of the 

nature of these relationships is essential to understanding soil function and predicting 

future change. 

Soils are under increasing stress, as demand for food and infrastructure increase in 

tandem with climate change and pollution. Within this thesis we have seen that 

changes in climate can impact soil biology and key functions such as hydrological 

behaviour and respiration. More importantly, however, we have shown the 

interconnectedness of the soil system, as biological taxa show strong relationships 

with both each other and soil physicochemical properties. Understanding this 

interconnectedness and its influence on ecosystem resilience to stress is the key 

challenge facing soil science. Integrating different sources of information, including 

monitoring, experimentation and modelling, allows us to address questions key to the 
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maintenance and improvement of soil health at a national scale. The future of soil 

science lies in combining the variety of effort and data collection to address the 

fundamental questions around climate change, sustainable land use and food 

production facing us as a society. 
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Abstract 

Soil biota accounts for ~25% of global biodiversity and is vital to nutrient cycling and 

primary production. There is growing momentum to study total belowground 

biodiversity across large ecological scales to understand how habitat and soil 

properties shape belowground communities. Microbial and animal components of 

belowground communities follow divergent responses to soil properties and land use 

intensification; however, it is unclear whether this extends across heterogeneous 

ecosystems. Here, a national-scale metabarcoding analysis of 436 locations across 7 

different temperate ecosystems shows that belowground animal and microbial 

(bacteria, archaea, fungi, and protists) richness follow divergent trends, whereas β-

diversity does not. Animal richness is governed by intensive land use and unaffected 

by soil properties, while microbial richness was driven by environmental properties 

across land uses. Our findings demonstrate that established divergent patterns of 

belowground microbial and animal diversity are consistent across heterogeneous land 

uses and are detectable using a standardised metabarcoding approach. 
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Introduction 

Soil biota, including bacteria, archaea, protists, fungi and animals underpin globally 

important ecosystem functions. Fundamental functions of soil communities include 

nutrient and hydrological cycling, decomposition, pollution mitigation, and 

supporting terrestrial primary production, which are inextricably linked to global food 

security, climate regulation and other ecosystem services1-2. Nevertheless, until 

recently, characterising soil biodiversity (popularly referred to as a “black box”) has 

been constrained by our inability to identify typically intractable levels of diversity 

using either traditional or molecular approaches. High-throughput sequencing has 

however resulted in a step change, facilitating the characterisation of bacteria3-7, 

archaea6-8, fungi9-10, protists11-13, and animals14 within the belowground biosphere. 

Increasingly, efforts have been made to investigate the total biodiversity of the soil 

biosphere across large ecological15-17 and taxonomic scales15-16,18-19.  

Understanding the response of the total soil biosphere to changes in land use and 

environmental drivers has become an important research focus in regional soil 

monitoring programmes15-16,19 and in small-scale field20-21 and mesocosm 

experiments18,20. Yet despite the move towards unified study of soil biota, fundamental 

challenges of technique and scale remain. Often such studies require the comparison 

of soil biota metrics captured through both traditional and modern molecular 

techniques15,19-21. To our knowledge, relatively few studies have attempted to assess all 

components of belowground communities using a multi-marker metabarcoding 

approach22. 

There is mounting evidence that the microbial and animal fractions of soil 

communities may respond differentially to land use change. Microbial richness 

increases15, whereas richness of soil fauna declines in response to more intense land 

use15,23-24. However, these findings come from relatively homogenous landscapes, such 

as grasslands15. It is unclear whether the differential responses of soil microbes and 

fauna extend across heterogeneous land uses. For example, across heterogeneous 

landscapes of Wales, UK, α-diversity of mesofauna is both lowest in agricultural and 

bog systems, which are the most- and least-intensively managed systems in the 

country, respectively23. Changes in soil properties may further dictate declines of 
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common soil fauna in low-intensity land uses. Therefore, it is critical to assess whether 

the positive effect of increasing land use intensity on microbial richness is consistent 

across regions made up of markedly diverse ecosystems and land uses. Similarly, the 

importance of individual soil properties in shaping belowground communities has also 

proven difficult to disentangle. Many studies have demonstrated the consistent 

dominance of pH in shaping belowground community composition at national 23,25-28 

and global scales4-5,9,29. However, climatic factors9,30 and other soil properties, 

including organic matter, nitrogen (N) availability, and the carbon (C)-to-N ratio9 are 

also recognised as important drivers of belowground community composition yet 

consistent trends remain elusive30. Therefore it is unclear whether the total soil 

biosphere responds to changes in land use and soil properties in the same manner 

across heterogeneous landscapes. 

Here, we sought to assess whether divergent responses to land use and soil properties 

in the microbial and animal fractions of soil communities persist across heterogeneous 

systems at the national-scale using a standardised metabarcoding approach. We 

present a national-scale analysis of soil biodiversity across Wales, UK, from the micro-

to-macro scale including all major groups of soil microbes in addition to animals, from 

436 sites over 2 years across a diverse array of oceanic-temperate ecosystems, 

including grasslands, forests, bogs, and managed systems. Biotic metrics come from 

high-throughput sequencing of prokaryotic, fungal, microbial eukaryotic and soil 

animal communities using 16S, ITS, and 18S rRNA marker genes; these are 

complemented by an extensive suite of co-located abiotic soil properties and 

vegetation cover data. Specifically, we investigate how richness and β-diversity of all 

major fractions of subterranean life respond to land use type and prevailing soil 

properties (e.g. organic matter, pH, and N) to explore which lineages play a 

demonstrable role in determining belowground community structures across large 

and complex ecological gradients. Our results demonstrate that across a gradient of 

heterogeneous land uses, richness of soil animals is governed more by land use regime 

rather than intrinsic soil properties. In contrast, microbial richness is driven by soil 

properties and demonstrates a largely linear trend of decreasing richness along a 

productivity gradient of land use based on decreasing soil nutrient availability.  
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Results 

Sequencing results 

Illumina sequencing and environmental data was collected from across Wales as part 

of the Glastir Monitoring and Evaluation Programme (GMEP)31. Sample sites were 

categorised into Aggregate Vegetation Classes (AVCs) based on plant species 

assessments using established criteria (see Supplementary Note 1). An explanation of 

the composition of AVCs is described in Supplementary Table 1. Briefly, the 7 AVCs 

used in the current study were established by clustering samples based on an 

assessment of vegetation data using a detrended correspondence analysis32. The 

ordination of the detrended correspondence analysis has shown that the land use 

categories follow a gradient of soil nutrient content32 from which soil productivity and 

management intensity can also be inferred (see Supplementary Note 1 and 

Supplementary Table 1). The AVCs in descending order of productivity are: 

Crops/weeds, Fertile grassland, Infertile grassland, Lowland wood, Upland wood, 

Moorland grass-mosaic, and Heath/bog.  

In total, 29,690 bacterial and 156 archaeal operational taxonomic units (OTUs) were 

identified from 16S reads. Overall, the most abundant class was Alphaproteobacteria 

(Fig. 1a). Proportional abundances (OTU n/total x 100) of Acidobacteria increased in 

less-productive land use types from its lowest in Crops/weeds to its highest in 

Heath/bog AVCs. In contrast, abundances of Actinobacteria followed the exact 

opposite trend, as did Spartobacteria and Bacilli (Fig. 2a). For archaea, Nitrososphaeria 

was the most abundant class overall (Fig. 1d); however, the proportion of 

Thermoplasmata became dominant in less productive AVCs (Fig. 2d).  
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Fig. 1. Sankey diagrams of proportional abundances of OTUs from all samples for major soil biota groups. Arms denote proportions of OTUs at the class-level for a) bacteria; 

b) fungi; of major lineages of c) protists; class-level for d) archaea; and at the phylum-level for e) animals. For information on how this figure was created, please see 

the Supplementary Methods. 
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Fig. 2. Proportionate abundances of OTUs for major soil biota groups within each Aggregate Vegetation Class ordered from most (Crops/weeds) to least (Heath/bog) using 

the same divisions as Fig. 1 for a) bacteria; b) fungi; c) protists; d) archaea; and e) animals. 
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There were 7,582 OTUs recovered from ITS1 sequences. Agaricomycetes were the 

most abundant class of fungi overall. There were also a large proportion of 

Sordariomycetes (Fig. 1b). Proportionate abundances of Sordariomycetes and 

Agaricomycetes followed contrasting trends, with the dominance of the former 

replaced by the later in lower productivity AVCs (Fig. 2b).  

In total, 8,683 protist OTUs were recovered from the 18S reads. Chloroplastida (green 

algae) was by far the most abundant protist group, followed by Rhizaria, 

Stramenopiles, and then Alveolates (Fig. 1c). Green algae, largely comprised of 

unidentified sequences (Supplementary Fig. 1a), were least abundant in Crops/weed 

and Heath/bog sites (Fig. 2c). Proportions of Rhizaria were relatively constant across 

AVCs (Fig. 2c) and entirely comprised of Cercozoa (Supplementary Fig. 1b). Among 

Stramenopiles proportions of Ochrophyta were also largely consistent, while those of 

Oomycetes and Bicosoecida followed contrasting trends across the productivity 

gradient of AVCs, declining and increasing, respectively (Supplementary Fig. 1c). 

Ciliates were the most common Alveolates in most AVCs; however, the proportion of 

Apicomplexa was greater in the Lowland wood and grassland AVCs (Supplementary 

Fig. 1d). The proportion of Amoebozoa was surprisingly low (Fig. 1c), potentially due 

to primer bias in our study when compared to other studies12,15. Across AVCs 

Tublulinea was consistently dominant among the Amoebozoa, though divergent 

trends in Gracilipodida and Discosea can be seen along the productivity/intensity 

gradient (Supplementary Fig. 1e).  

In the animal dataset, 1,138 OTUs were recovered. Nematode OTUs were the most 

abundant animal group across all samples (Fig. 1e). Annelids and arthropods followed 

opposing trends in proportionate abundance, increasing and decreasing respectively, 

across the productivity gradient. Proportions of platyhelminthes and tardigrades also 

increased in less-productive AVCs (Fig. 2e).  

Effect of land use on belowground richness 

 We found significant differences in biodiversity trends across land use types. 

There was a marked shift along the productivity gradient of Crops/weeds-to-

Heath/bog in all organismal groups, except animals (Fig. 3). Significant differences in 
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the mean richness of bacterial OTUs were prominent (F6, 264 = 78.47, p < 0.0001) 

following ANOVA. Bacterial richness decreased in AVCs across the productivity 

gradient with highest values in the most productive Crops/weeds and grasslands and 

lowest in the low productivity land uses (i.e. Moorland grass-mosaic, Heath/bog) (Fig. 

3a). The same trend was also observed in fungi (F6, 248 = 48.98, p < 0.001; Fig. 3b), and 

protists (F6, 249 = 59.86, p < 0.001; Fig. 3c). For individual pair-wise comparisons see 

Supplementary Note 4. Richness of archaeal OTUs had an opposing trend to that of 

other microbial groups. Archaeal OTU richness was significantly lower (F6, 185 = 24.37, 

p < 0.001) in higher-productivity AVCs and highest in the least-productive land-use 

types (Fig. 3d). In the Crops/weeds AVC richness of archaeal OTUs was significantly 

lower than Upland wood (p = 0.01), Moorland grass-mosaic (p = 0.005), and 

Heath/bog sites (p < 0.001) based on Tukey’s post hoc tests, with the remaining land 

uses displaying intermediate OTU richness values.  
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Fig. 3. Boxplots of OTU richness for a) bacteria; b) fungi; c) protists; d) archaea; e) animals plotted against Aggregate Vegetation Class ordered from most (Crops/weeds) to 

least (Heath/bog) productive. Boxes are bounded on the first and third quartiles; horizontal lines denote medians. Black dots are outliers beyond the whiskers, which 

denote 1.5X the interquartile range. Source data are provided as a Source Data file.  
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Animal OTU richness did not follow the trends observed in microbial communities. 

Differences observed with ANOVA were significant (F6, 244 = 6.25, p < 0.001) but 

plateaued after the grassland AVCs, as opposed to the sloped trend of microbial 

groups across the productivity gradient (Fig. 3e). Richness in the Infertile grasslands 

was significantly greater than in Crops/weeds (p = 0.008), Heath/bog (p = 0.003), and 

Upland wood (p = 0.02) based on Tukey’s post hoc tests. Richness was lowest in the 

most intensively management Crops/weeds sites and was shown to be significantly 

lower than richness of Lowland woods (p = 0.04) with Tukey’s test. Collectively the 

results demonstrate a strong divergence between the richness of animal and microbial 

communities across all AVCs. 

Relationships of richness between organismal groups 

Bacterial richness from the total data set was significantly correlated with all other 

organismal groups (Supplementary Table 2). Such relationships were positive between 

bacterial richness and richness of fungi, protists, and animals. Similarly there was a 

positive relationship between protistan richness and both fungal and animal richness. 

However, archaeal richness demonstrated significant, but negative correlations with 

all organisms except animals. Indeed animal richness (measured by metabarcoding) 

was only significantly correlated with animals (measured by taxonomic assessment; 

Table 1) and protists (Supplementary Table 2). 
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Table 1 Results of partial least squares regressions for soil biota against soil properties for richness. Positive relationships are underlined; negative relationships are written 

in italics. *** indicates p < 0.001, ** 0.001 > p < 0.01, * 0.01 > p < 0.05, blank indicates p > 0.05.   

Soil and environmental variables Taxon 

Bacteria Archaea Fungi Protists Animals 

Total CL 1.14 (R2 = 0.44***)  1.21 (R2 =0.13***) 0.44 1.3 (R2 = 0.35***) 0.9 

Total NL 0.93 0.89 0.93 0.8 1.18 

C:N ratioS 1.45 (R2 = 0.41***) 1.31 (R2 = 0.09***) 1.64 (R2 = 0.28***) 1.67 (R2 = 0.35***) 0.1 

Total P (mg kg ^-1)S 0.35 0.59 0.7 0.85 0.67 

Organic matter (% LOI)L 1.47 (R2 = 0.5***) 1.27 (R2 = 0.14***) 1.13 (R2 = 0.29***) 1.27 (R2 = 0.35***) 1.08 

pH (CaCl2) 1.98 (R2 = 0.51***) 1.68 (R2 = 0.25***) 1.52 (R2 = 0.23***) 1.56 (R2 = 0.33***) 0.9 

Soil water repellencyL* 1.31 (R2 = 0.2***) 0.9 1.23 (R2 = 0.13***) 0.93 0.98 

Volumetric water content (m3 

m3 ^-1) 

0.36 1.33 (R2 = 0.13***) 0.6 0.41 0.4 

Soil bound water (g water g dry 

soil ^-1) 

1.25 (R2 = 0.41***) 0.83 1.08 (R2 = 0.26***) 1.23 (R2 = 0.31***) 0.63 

Rock volume (mL) 0.25 0.61 0.64 0.27 1.3 

Bulk density (g cm3 ^-1) 1.39 (R2 = 0.44***) 1.43 (R2 = 0.18***) 1.41 (R2 = 0.29***) 1.5 (R2 = 0.35***) 1.39 

Clay content (%)A 0.85 1.19 (R2 = 0.1***) 0.84 1.14 (R2 = 0.09***) 0.05 

Sand content (%)A 0.45 0.16 0.6 0.51 0.78 

Elevation (m) 1.66 (R2 = 0.42***) 1.7 (R2 = 0.27***) 1.68 (R2 = 0.22***) 1.65 (R2 = 0.36***) 0.57 

Mean annual precipitation (mL) 1.08 (R2 = 0.25***) 1.75 (R2 = 0.3***) 1.44 (R2 = 0.18***) 1.48 (R2 = 0.27***) 0.46 

Temperature (°C) 0.51 0.5 0.56 0.58 0.35 

CollembolaL1 0.34 0.06 0.41 0.17 1.14 (R2 = 0.03***) 

MitesL1 0.49 0.2 1.17 (R2 = 0.03***) 0.23 1.74 (R2 0.08***) 

Total mesofaunaL1 0.44 0.1 1.03 (R2 = 0.01*) 0.15 1.71 (R2 0.08***) 

Note: A denotes Aitchison’s log-ratio transformation; L denotes log10-transformation; L1 denotes log10 plus 1 transformation S denotes square-root-transformation; * soil 

water repellency was derived from median water drop penetration times (s) 
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Relationships between richness and environmental variables 

Partial least squares (PLS) regressions demonstrated that the divergence observed 

between animal and microbial communities may be due to the effects of soil 

properties. No soil properties were significantly correlated with richness of soil animal 

OTUs (Table 1). Conversely, there were strong relationships between microbial 

richness and a range of soil properties. However, although microbes were influenced 

by the same environmental variables, there were distinct patterns within each group. 

For example, while pH was the best predictor of bacterial richness, it was ranked as 

second for fungi and protists and third for archaea. Bulk density and C:N ratio were 

also major drivers of richness across all microbial groups. Elevation (here closely 

linked with precipitation and organic matter content) was the most important 

environmental variable in relation to archaea and protist richness. Organic matter and 

bulk density were strong predictors of fungal OTU richness. All environmental 

properties that had positive relationships with OTU richness of bacteria, fungi, and 

protists had negative relationships with archaea.  

Community structure (β-diversity) across land uses 

Non-metric multidimensional scaling (NMDS) using Bray-Curtis distances showed 

consistent differences in β-diversity between AVCs across all organismal groups. Plots 

show tight clustering of the Crops/Weeds, Fertile Grassland, and Infertile Grassland 

AVCs, whereas the other AVCs form a more dispersed organismal assemblage (Fig. 4 

for bacteria and Supplementary Figs 2-5). Results of PERMANOVAs were significant 

across all groups and analyses of dispersion were also significant (Fig. 4 for bacteria 

and Supplementary Figs 2-5) for all groups except for the dispersion of animals (F6, 401 

= 0.67, p = 0.68) owing to the wide range of sample numbers within each AVC 

(Supplementary Fig. 5).  We also found that this clustering was present using 

constrained canonical analyses of principle components (CAP) ordinations for each 

organismal group (Supplementary Figs 6-10).  
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Fig. 4. Plot of the non-metric dimensional scaling ordination (stress = 0.06) of bacterial community composition 

across GMEP sites. Samples are coloured by Aggregate Vegetation Class. Results of PERMANOVA (F6,427 

= 30.76, p = 0.001) and dispersion of variances of groups (F6,427 = 10.97, p = 0.001) were significant.  

 

pH was the best predictor of β-diversity from linear fitting for all soil organisms (Table 

2 and Supplementary Tables 3-6). The carbon-to-nitrogen (C:N) ratio was the second 

most important variable in all major groups except animals. Mean C:N values were 
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higher in the Crops/weeds and grassland AVCs and lower in the remaining land use 

types (Supplementary Table 6). Mean pH values and C:N ratios (Supplementary Table 

6) reflect the distribution of points in NMDS plots, with tight groupings observed in 

the Crops/Weeds and grasslands AVCs and increasingly more spread out groupings in 

all other AVCs as pH values decreased and became more varied (Fig. 4 for bacteria and 

Supplementary Figs 2-5). Across all groups, all or nearly all variables were significant 

following linear fitting; however, most were only weakly correlated with β-diversity 

values. Other important variables varied in their ranked importance including: 

elevation, mean annual precipitation, organic matter content, total C, bulk density, 

volumetric water content, and clay content of soil (Table 2 and Supplementary Tables 

3-6). The results of linear model fitting for CAP ordinations, though not identical 

(Supplementary Tables 7-11), were highly related to those of the NMDS ordinations 

(Supplementary Fig. 11). 
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Table 2 Summary of relationships amongst environmental factors and bacteria communities.  

Soil and environmental variables  Correlation 

R2 Axis1 Axis2 Axis3 

pH (CaCl2) 0.71*** - - + 

C:N ratioS 0.52*** + - + 

Volumetric water content (m3 m3 ^-1) 0.49*** + - + 

Bulk density (g cm3 ^-1) 0.47*** - + - 

Organic matter (% LOI)L 0.46*** + - + 

Elevation (m) 0.45*** + - - 

Mean annual precipitation (mL) 0.43*** + - - 

Total CarbonL 0.39*** + - + 

Clay content (%)A 0.33*** - + - 

Soil bound water (g water g dry soil ^-1) 0.31*** + - + 

Soil water repellencyL* 0.27*** + - - 

Total Nitrogen (%)L  0.26*** + - + 

Sand content (%)A 0.21*** + + + 

CollembolaL1 0.09*** - + - 

MitesL1 0.06*** + + - 

Total Phosphorus (mg kg ^-1)S 0.06*** - - - 

Total mesofaunaL1 0.06*** + + - 

Rock volume (mL) 0.05** - + - 

Temperature (°C) 0.03* + + - 

Note: +/- signify the direction of association between each variable and respective NMDS axes. A denotes 

Aitchison’s log-ratio transformation; L denotes log10-transformation; L1 denotes log10 plus 1 

transformation S denotes square-root-transformation; * soil water repellency was derived from median 

water drop penetration times (s)  
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Discussion 

High-throughput sequencing the biosphere amongst heterogeneous soils revealed 

both expected and novel relationships between soil organisms and environmental 

drivers. The richness of microbes and animals had notable contrasting trends across 

land use types. The richness of microbial communities was strongly influenced by 

both land use and environmental variables, especially pH, C:N ratio, elevation, organic 

matter, and annual precipitation. Conversely, we found no significant associations 

between measured environmental variables and animal richness, which was negatively 

impacted by higher intensity land use, suggesting that richness patterns of microbial 

and macrobial life fractions adhere to different ecological determinants. For β-

diversity, pH was by far the most important environmental variable in shaping 

community composition of all organismal groups, yet other drivers were attributable 

for influencing patterns of α-diversity.  

Our findings demonstrate that diverging trends between soil microbes and fauna 

extend across distinct, heterogeneous land uses. Furthermore, we build on the work of 

Gossner et al.15 by demonstrating that microbial richness, with the exception of 

archaea, increases with greater land use intensity across heterogeneous ecosystems at 

the national-scale. The divergence between microbes and animals at this scale is 

supported by previous findings from French soils17,25. Across France, bacterial 

richness17 and biomass25 were strongly linked to belowground environmental 

properties but largely unaffected by aboveground climatic variables, which commonly 

influence animal and plant biogeography25,30. Our findings show that richness of 

archaea, fungi, and protists also follow this trend – whereas archaea follow an 

opposing trend to all other groups.  

There are several mechanisms that may explain the relationship between higher 

microbial richness and intensifying anthropogenic disturbance. One explanation is 

that consistent nutrient inputs from fertilizers and disturbance under tillage stimulate 

high α-diversity in these areas16. Indeed higher α-diversity has been observed in 

cropping systems than in forest or grassland sites for both bacteria16-17, and fungi16. 

Interestingly, high microbial richness in more productive land use types (e.g. arable) 

may illustrate the intermediate disturbance hypothesis (IDH) within soil ecosystems. 
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Under the IDH, as outlined by Connell33, diversity reaches its highest levels where 

succession has been interrupted by intermittent disturbance events. In our sites, 

microbial richness was highest in AVCs concurrent to disturbances (augmented by 

nutrient inputs) from agricultural interventions such as fertilisation, tilling, clearing, 

and the cultivation of livestock. However, it is also possible that the high diversity 

observed in the grassland and especially in agricultural land uses stems from 

organisms that have entered a dormant state after disturbance-induced changes to 

their environment13,34. Disturbance pressures can also lead to high bacterial diversity 

through the reduction in dominant OTUs, which are replaced by a wide range of 

weaker competitors. It has been demonstrated that α-bacterial diversity is greater in 

the phyllosphere of ivy in urban habitats associated with more anthropogenic stressors 

than in less disturbed sites35. Our findings suggest that the phenomenon of greater 

species richness resulting from the addition of nutrients and non-equilibrium 

dynamics induced by disturbance may extend to across all microbial groups, with the 

possible exception of archaea.  

Richness of all microbial groups, except archaea, followed the land use 

productivity/management intensity gradient32 with higher richness in the highly 

productive and more disturbed grasslands and arable sites and lower richness in the 

least productive, relatively undisturbed upland Heath/bog sites. Changes within 

bacterial and fungal communities reflected expected within-community changes 

following the shift in soil nutrient quality across land uses. Actinobacteria36 and 

Sordariomycetes37 are known to dominate bacterial and fungal communities in high 

productivity grasslands as witnessed here. In contrast, Acidobacteria increased in 

proportion in low productivity, highly acidic AVCs as expected based on previous 

studies from the UK27 and across the globe7. Likewise, the greater proportion of 

Agaricomycetes OTUs in low productivity AVCs is intuitive as many Agaricomycete 

fungi are common in bogs and related low-productivity habitats across Wales38.  

Protists have been chronically overlooked in European soil monitoring programmes 

(but see28), as extracting trends of protist diversity across land uses is difficult. For 

example, Gossner et al.15 were not able to show changes in richness across all protists 

with land use intensification. We demonstrate that protistan richness follows the 
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trends of bacteria and fungi across land uses, with the highest richness levels in arable 

land. As with other microbes, there is evidence of increased protist richness at the 

mesocosm39 and field40 level, in response to fertiliser addition. Furthermore, in 

German grassland soils, protist richness has been shown to increase with land use 

intensity41. Our results show that an association between intensification and protistan 

richness extends across the national-scale over multiple land uses. 

Unlike other microbes, archaeal richness was greatest in low productivity AVCs and 

lowest in highly productive sites (Fig. 3d). Furthermore, our understanding of the 

extent of soil archaeal diversity and its functional capabilities is continually 

increasing6-8. Recent research has revealed many lineages of Thaumarchaeota are 

crucial links in the N cycle and methanogenesis in soils7-8. Archaeal richness was 

highest in the Moorland grass-mosaic and Heath/bog AVCs, likely due to the 

specialised nature of acidophilic lineages. In particular, the Thaumarchaeota42 and 

Thermoplasmata43 are known to proliferate (Fig. 2d) under reduced competition from 

bacteria. 

Animal richness did not change linearly with land use and was not strongly influenced 

by environmental variables. Our molecular analysis of soil eDNA support recent 

findings by George et al.23 based on morphological assessments of coincident soil 

mesofauna. Both the present work and George et al.23 demonstrated that animal 

richness and abundance were lowest in land uses associated with more intensive 

management. Animal richness peaked in Infertile grasslands and was lowest in 

Crops/weeds sites (Fig. 3e). Agricultural disturbance negatively affects soil faunal 

richness and diversity across large geographic scales14,23-24. However, in the low-

productivity land uses, although proportional abundances of arthropod taxa declined 

similarly to the findings of George et al.23, overall richness was not as strongly affected 

due to an increase in fractions of annelids, platyhelminthes, and tardigrades. Such an 

increase in the peat-rich, low-disturbance, higher elevation sites is rather intuitive 

since annelids, platyhelminthes, and tardigrades are susceptible to desiccation and 

require moist habitats to be active components of the soil community44-45. As soil 

animals still exhibited expected lower diversity trends in more intensively managed 

land uses15,23-24, there are further opportunities for research into understanding the 



 

259 

 

mechanisms underlying the divergent richness trends between microscopic animals 

and the rest of soil communities. 

Soil pH, as evidenced by ordination results, was the most important environmental 

variable in our study for β-diversity and in most cases richness as has been previously 

observed across the UK27-28 and at larger national25-26 and continental scales4-6. pH has 

been implicated with driving richness of soil Archaea42-43 and is the most important 

driver of protist communities in the UK28. However, pH only plays a marginal role in 

shaping soil protist communities globally11. Likewise pH is a poor predictor of global 

fungal biogeography, yet is a good predictor of ectomycorrhizal fungal richness9, 

which may contribute to the Agaricomycetes OTUs observed in the present study. 

Nevertheless, it is important to acknowledge the inconsistent nature of correlations 

between microbial biodiversity and pH, potentially due to variations in soil properties 

occurring at scales that do not align with large-scale soil surveys30. 

We also observed a strong effect of C:N ratio in determining richness of microbes and 

β-diversity of all organismal groups, as has been observed in bacterial27 and protistan28 

β-diversity across Britain and some fungi globally9. Yet C:N ratio is often co-correlated 

with other soil properties including bulk density, total C, organic matter, elevation, 

and mean annual precipitation. Disentangling such related variables is difficult; 

despite using PLS analyses46 we could not disentangle co-correlated soil properties. 

For example, AVCs such as Moorland grass-mosaic and Heath/bog generally had 

higher elevation, mean annual precipitation, C:N ratio, and both total C and N 

(Supplementary Table 12) owing to their less-disturbed, upland location and often 

peat-rich soils. Higher C:N ratios are indicative of lower-quality soils47 and have 

historically been associated with a shift in microbial biomass from bacterial to fungal 

dominance48. Our results suggest that, with the exception of archaea, microbial 

richness is equally susceptible to the effect of soil quality degradation. According to 

our results, archaea, on the contrary, appear to be well adapted to habitats with lower 

nutrient quality. 

We observed strong relationships between soil properties and microbial, but not 

animal richness. We suspect this is due to the direct effects of soil properties on 

microbes. For example, shifts in pH towards either a more alkaline or acidic condition 
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inhibit the ability of most non-specialised bacteria to uptake nutrients from their 

environment26. In addition the quality of soil nutrients, as discussed previously, was 

likely a strong determinant of available nutrient resources and therefore total richness 

of microbes. We also found strong relationships between soil properties and β-

diversity and across all organismal groups. These relationships between Bray-Curtis 

dissimilarities of and soil properties demonstrate that more dissimilar belowground 

communities correlate positively with indicators of better quality soils across the 

breadth of soil biota (Supplementary Table 6). However, associations between 

nutrient quality and animal community composition are likely the result of nutrients 

influencing the composition of the aboveground plant community49 rather than direct 

interactions with animals. Furthermore, animals are more vagile than microbes and 

can actively seek out microhabitats with better resources50, limiting the direct impact 

of soil properties on animal richness.  

Using an extensive soil sampling programme and metabarcoding, we present perhaps 

the most comprehensive assessment of the belowground diversity in Europe. Despite 

uncertainties on the ability of environmental DNA methods using small soil volumes 

to accurately characterise communities of larger organisms51, we were still able to 

detect key differences in larger organisms (i.e. animals) across land uses.  Our results 

highlight the complexity of belowground ecology by demonstrating a divergence of 

patterns of richness between soil fauna and microorganisms at a national-level. We 

show that microbial richness is strongly influenced by soil properties in a near-

uniform manner, whereas animal richness is not. Rather, animal richness is likely 

driven by changes in aboveground communities that stem from intensive land use 

management, while microbial richness was affected by soil properties in addition to 

land use. A particularly interesting outcome of our analyses is the near-uniform trend 

of declining microbial richness along a gradient of decreasing land use 

productivity/management intensity. The data therefore suggest that soil properties 

strongly affect bacteria, fungi, and protists in a similar manner, whereby richness 

decreases with soil quality; whereas archaea showed an opposing trend with increasing 

richness as productivity declined. The richness of animal OTUs, on the contrary, was 

not affected by soil properties although β-diversity was.  Although often considered as 
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ecological ‘black boxes’, soils continue to provide unique and coherent insights into 

the differences between interconnected microbial and macrobial assemblages. Our 

findings also highlight the importance of the dynamics between biotic and abiotic 

processes that drive the organization of belowground biological diversity. 

 

Methods 

Sampling 

Soil samples were collected between late spring and early autumn in 2013 and 2014 as 

part of GMEP (Supplementary Note 2), established to monitor the Welsh 

Government’s agri-environment scheme, Glastir. The scheme covered an area of 3,263 

km2 with 4,911 landowners31. Briefly, surveyors collected samples from randomly 

selected 1 km2 squares with up to 3 locations within squares, following protocols 

established by the UK Countryside Survey52. As described previously, habitat within 

plots was classified using plant species assessments into one of seven AVCs32: 

Crops/weeds (n = 9), Fertile grassland (n = 98), Infertile grassland (n = 162), Lowland 

wood (n = 17), Upland wood (n = 44), Moorland-grass mosaic (n = 54), and Heath/bog 

(n = 52) (Supplementary Note 1; Supplementary Table 1). Soil type was derived from 

the National Soil Map53 (Supplementary Note 3; Supplementary Table 13). Organic 

matter content was classified by loss-on-ignition (LOI) following the protocols of the 

2007 Countryside Survey51. 

 A total of 436 cores were collected from 1 km2 squares, with up to 3 samples 

coming from an individual square based on a randomised sampling design. Cores were 

transported to the Centre for Ecology and Hydrology, Bangor, United Kingdom, and 

stored at -80 °C until DNA extraction. Soil physical and chemical properties were 

taken from 4 cm diameter by 15 cm deep cores co-located with the high-throughput 

sequencing cores. These included total C (%), N (%), P (mg kg ^-1), organic matter (% 

LOI), pH (measured in 0.01 M CaCl2), mean soil water repellency (median water drop 

penetration time in seconds), bulk density (g cm3 ^-1), volume of rocks (cm3), soil 

bound water (g water g dry soil ^-1), volumetric water content (m3 m3 ^-1), as well as 

clay and sand content (%) of soil. Abundances of mesofauna collected as part of GMEP 
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were taken from George et al.23 and geographic data including grid eastings, northings, 

and elevation were also included in our analyses. For complete details on chemical 

analyses see Emmett et al.51. Temperature (°C) and mean annual precipitation (mL) 

were extracted from the Climate Hydrology and Ecology research Support System 

dataset54. Mean values for each variable were recorded for each AVC (Supplementary 

Table 12) and soil properties were normalised where appropriate. 

Soil texture data were measured by laser granulometry with a LS320 13 analyser 

(Beckman-Coulter). We subsampled approximately 0.5 g of soil taken from 15 cm 

cores by manual quartering and removed organic C using H2O2 and then transferred 

the sample into 250 mL bottles, added 5 mL of 5 % Calgon ® and shook overnight at 

240 rpm. Bottles were emptied manually into the laser diffraction instrument for 

measuring particle size distribution. Full Mie theory was used to obtain a particle size 

distribution from the raw measurement data, with the real refractive index set to 1.55 

and the absorption coefficient at 0.1 as in Özer et al.55. The cut-off points for clay, silt, 

and sand were: 2.2 μm, 63 μm and 2000 μm respectively. Clay and sand percentages 

were selected for subsequent analyses and normalised using Aitchison’s log-ratio 

transformation. 

DNA extraction  

Soils were homogenised by passing through a sterilised 2 mm stainless steel sieve. 

Sieves were sterilised between samples by rinsing under the tap water using high flow, 

applying Vircon laboratory disinfectant and UV-treating each side for 5 minutes. DNA 

was extracted by mechanical lysis and the homogenisation step performed in triplicate 

from 0.25 g of soil per sample using a PowerLyzer PowerSoil DNA Isolation Kit (MO-

BIO). Pre-treatment with 750 L of 1 M CaCO3 following Sagova-Mareckova et al.56 

was performed as it was shown to improve PCR performances, especially for acidic 

soils. Extracted DNA was stored at -20 °C until amplicon library preparation began. To 

check for contamination in sieves 3 negative control DNA extractions were completed 

and an additional 2 negative control kit extractions were performed using the same 

technique but without the CaCO3 solution.  
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Primer selection and PCR protocols for library preparation 

Amplicon libraries were created using primers for rRNA marker genes, specifically for 

the V4 region of the 16S rDNA gene targeting bacteria and archaea (515F/806R)57, ITS1 

targeting fungi (ITS5/5.8S_fungi)58, and the V4 region of the 18S rDNA gene 

(TAReuk454FWD1/TAReukREV3)59 targeting a wide range of, but not all, eukaryotic 

organisms. We used a two-step PCR following protocols devised in conjunction with 

the Liverpool Centre for Genome Research. Amplification of amplicon libraries was 

run in triplicate on DNA Engine Tetrad® 2 Peltier Thermal Cycler (BIO-RAD 

Laboratories) and thermocycling parameters for each PCR started with 98 °C for 30 s 

and terminated with 72 °C for 10 min for final extension and held at 4 °C for a final 10 

min. For the 16S locus, first-round PCR amplification followed 10 cycles of 98 °C for 10 

s; 50 °C for 30 s; 72 °C for 30 s. For ITS1, there were 15 cycles of 98 °C for 10 s; 58 °C for 

30 s; 72 °C for 30 s. For 18S there were 15 cycles at 98 °C for 10 s; 50 °C for 30 s; 72 °C 

for 30 s. Twelve μL of each first-round PCR product were mixed with 0.1 μL of 

exonuclease I, 0.2 of μL thermosensitive alkaline phosphatase, and 0.7 μL of water and 

cleaned in the thermocycler with a programme of 37 °C for 15 min and 74 °C for 15 min 

and held at 4 °C. Addition of Illumina Nextera XT 384-way indexing primers to the 

cleaned first round PCR products were amplified following a single protocol which 

started with initial denaturation at 98 °C for 3 min; 15 cycles of 95 °C for 30 s; 55°C for 

30 s; 72 °C for 30s; final extension at 72 °C for 5 min and held at 4 °C. Twenty-five μL 

of second-round PCR products were purified with an equal amount of AMPure XP 

beads (Beckman Coulter). Library preparation for 2013 samples was conducted at 

Bangor University. Illumina sequencing for both years and library preparation for 2014 

samples were conducted at the Liverpool Centre for Genome Research. 

Bioinformatics 

Bioinformatics analyses were performed on the Supercomputing Wales cluster. A total 

of 130,219260, 104,276,828, and 98,999,009 raw reads were recovered from the 16S, 

ITS1, and 18S sequences, respectively. Illumina adapters were trimmed from sequences 

using Cutadapt60 with 10% level mismatch for removal. Sequences were then de-

multiplexed, filtered, quality-checked, and clustered using a combination of 

USEARCH v. 7.061 and VSEARCH v. 2.3.262. Open-reference clustering (97% sequence 
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similarity) of operational taxonomic units (OTUs) was performed using VSEARCH; all 

other steps were conducted with USEARCH. Sequences with a maximum error greater 

than 1 and shorter than 200 bp were removed following the merging of forward and 

reverse reads for 16S and ITS1 sequences. A cut-off of 250 bp was used for 18S 

sequences, according to higher quality scores. There were 15,202,313 (16S), 7,242,508 

(ITS1), and 9,163,754 (18S) cleaned reads left at the end of these steps. Sequences were 

sorted and those that only appeared once in the dataset were removed. Briefly, filtered 

sequences were matched first against a number of different reference databases: 

Greengenes 13.863, UNITE 7.264, and SILVA 12865 for 16S, ITS1, 18S, respectively. Ten 

per cent of sequences that failed to match were clustered de novo and used as a new 

reference database for failed sequences. Sequences that failed to match with the de 

novo database were subsequently also clustered de novo. All clusters were collated and 

chimeras were removed using the uchime_ref command in VSEARCH.  

Chimera-free clusters and taxonomy assignment were used to create an OTU table 

with QIIME v. 1.9.166 using RDP67 methodology with the GreenGenes database for 16S 

and UNITE database for ITS1 data. Taxonomy was assigned to the 18S OTU table using 

BLAST68 against the SILVA database and OTUs appearing only once or in only 1 

sample were removed from each OTU table. 

Newick trees were constructed for the 16S and 18S tables using 80% identity 

thresholds. The trees were combined with their respective OTU tables as part of 

analyses using the R package phyloseq69, removing OTUs that did not appear in both 

the tree and OTU table. OTUs identified as eukaryotes in the 16S OTU table, non-

fungi OTUs in the ITS OTU table, as well as OTUs identified as fungi, plants, and non-

soil animals were removed from the 18S OTU table. Read counts from each group were 

normalised using rarefaction. The OTU tables were rarefied 100 times using 

phyloseq69 (as justified by Weiss et al.70) and the resulting mean richness was 

calculated for each sample. The read depth used for rarefaction varied for each group 

(Supplementary Table 14). Samples with lower read counts than this cut-off were 

removed before rarefaction. A summary of number of replicates per AVC is included in 

Supplementary Table 1. 
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Statistical analyses 

All statistical analyses were run using R v. 3.3.371 using the rarefied data sets for each 

organismal group. The vegan package72 was used to assess β-diversity via NMDS and 

CAP ordinations based on Bray-Curtis dissimilarities. A linear model for each 

environmental variable was fit separately to the ordination using the envfit function, 

the results are presented ranked according to goodness-of-fit. Results of goodness-of-

fit for each variable from both ordination methods were compared using regression 

analyses to look for congruence. The values of all variables were plotted against NMDS 

scores to determine if there were positive or negative relationships with each NMDS 

axis. Differences in β-diversity amongst AVCs were calculated with PERMANOV. The 

assumption of homogeneity of dispersion was verified using the betadisper function. 

 Linear mixed models were constructed using package nlme73 to test the 

differences in α-diversity amongst AVCs for each organismal group. Model selection 

was performed using AVC, soil type, LOI classification, and sample year as fixed 

factors; sample square identity was the random factor. To determine the best possible 

model, predictors other than AVC were dropped to find the lowest AIC scores using 

the AICcmodavg package74. For each model, significant differences were assessed by 

ANOVA and pairwise differences were identified with Tukey’s post-hoc tests from the 

multcomp package75.   

 Partial least squares regressions found in package pls76 were used to identify the 

most important environmental variables for richness. Such analysis is ideal for data 

where there are many more explanatory variables than sample numbers or where 

extreme multicollinearity is present46. As in Lallias et al.46, we used the variable 

importance in projection (VIP) approach77 to sort the original explanatory variables by 

order of importance; variables with VIP values > 1 were considered most important. 

Relationships between important variables and richness values for each group of 

organisms were investigated by linear regression. Richness was normalised before 

regression when necessary. Pearson’s correlation coefficient was used to directly 

compare richness of organismal groups. 
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APPENDIX B 

 

Microbial community composition is associated 

with soil respiration in a long term climate 

change experiment 

 

This appendix presents a piece of work linking the soil microbial community 

characterisation presented in Chapter 6 with concurrent measurements of soil 

respiration at the same site. It is currently being compiled into a manuscript on soil 

respiration at Clocaenog, lead author Sabine Reinsch. Within this work winter 

respiration for the 2016/17 season was modelled in response to treatment and soil 

physicochemical variables. We found that adding bacterial and fungal community 

composition improved the ability of the model to predict winter respiration.  
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Introduction 

Predicting the future response of soil carbon to climate change is essential for 

understanding global climate feedbacks due to the size of the soil carbon pool (Batjes, 

1996; Stocker et al., 2013). However, the soil respiration response to climate change is 

highly variable and we still have limited understanding of what drives this variation 

(Crowther et al., 2016; van Gestel et al., 2018). One of the factors that is often 

suggested to influence respiration is microbial community composition. The microbial 

community is known to respond to experimental drought and warming, with greater 

response to drought in wetter climates and warming in colder climates (Chen et al., 

2015; Ren et al., 2018; Zhou et al., 2018). This can be compared to the non-linear 

changes in respiration with temperature globally, where respiration follows a Gaussian 

response to temperature resulting in greater sensitivity to temperature increases in 

colder climates (Carey et al., 2016).  

The Clocaenog long-term drought and warming experiment has shown an increase in 

soil respiration for both the drought and the warming treatment compared to the 

control over the 20 years of the experiment (Reinsch et al., in prep). The ever-

increasing technical capability to study the microbial communities in soil allow us to 

begin to establish whether the soil ecology could be playing a role in determining the 

whole-ecosystem response. Previous studies on the soil mesofauna in Clocaenog and 

similar sites have found no change in mesofaunal communities with drought or 

warming, indicating that the soil meso-ecology cannot always act as a reliable 

indicator of processes occurring at smaller scales (Holmstrup et al., 2012, 2013; 

Petersen, 2011). Establishing what within our site is driving the increase in respiration 

will inform the relevance of our results to the wider landscape. 

Methods 

Average Rs from November to February 2016-17 was modelled in a Bayesian 

framework using the brms package (Bürkner, 2017) in R version 3.6.1 (R Core Team, 

2019). Predictor variables included in the base model were climate treatment, average 

soil moisture at time of Rs measurement and EC of the topsoil. Plot identity was used 

as a random effect. The bacterial and fungal NMDS scores from the topsoil sample 
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closest to the location of the Rs collar in the field were added to the base model. For a 

description of the methods used to characterise the soil microbial community see 

Chapter 6. Missing values from failed DNA amplification were imputed within the 

multivariate model using the identity of the corresponding microbial community in 

the transition zone, climate treatment, EC and pH as predictors. 

Results  

Inclusion of the bacterial and fungal composition improved the ability of the model to 

predict average respiration for winter 2016/17 (Figure 1). The best model by R2 of 

respiration had experimental treatment, moisture, electrical conductivity, and topsoil 

bacterial and fungal NMDS scores (Figure 2). Addition of pH did not improve the 

model’s ability to predict respiration. The model with fungal data and not bacterial 

data performed slightly better than the model with bacterial data only, however the 

standard errors of this are large due to the high level of missing fungal data which had 

to be imputed from topsoil physicochemical properties and fungal communities 

deeper in the soil profile. Including both bacterial and fungal data improved the model 

explanatory power to above 50%. 

 

Figure 1: Development of model fits for Rs models with and without considering the microbial community 

composition (bacteria, fungi, and bacteria + fungi) when climate treatment, soil moisture and 

electrical conductivity were accounted for. 
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The standard errors of all the predictors were large and overlapped zero (Figure 2). 

However, it can be seen in general that the drought treatment positively influenced 

respiration, while warming had little impact once the soil physicochemical and 

biological parameters were accounted for. Increasing electrical conductivity increased 

respiration, and to a lesser extent this is true for moisture. The fungal NMDS scores 

both had negative impacts on respiration, if you compare to Figure 6.2 this indicates 

that the drought plot fungal communities are associated with higher respiration. The 

bacterial NMDS scores had the opposite effects on soil respiration, comparison to 

Figure 6.2 shows that respiration increases as you go towards the top left of the NMDS 

plot towards the control and warming associated bacterial communities. 

 

Figure 2: The predictors of the average respiration for the model with bacterial and fungal community 

composition included. 

Discussion 

Our result that soil microbial community composition improves ability to predict soil 

respiration is in agreement with previous work showing the importance of microbial 
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communities in determining decomposition (Allison et al., 2013; Martiny et al., 2017). 

Microbial communities drive soil processes and functions (Bardgett & van der Putten, 

2014) and are particularly important to soil respiration (Davidson & Janssens, 2006). 

The direct impact of warming and drought upon respiration was minimal once 

changes in topsoil moisture, EC and microbial communities were accounted for, but 

drought still had a small positive influence on respiration. This indicates that while 

the impact of drought was mostly mediated by changes in these properties there are 

still potential undescribed pathways through which drought impacts soil respiration. 

The effect of warming, however, was completely mediated by changes in the soil 

physicochemical properties and microbial community. 

Within this analysis we have used only microbial community data from the topsoil as 

this is the most carbon-rich, biologically active layer of our soil. However, it is possible 

that dynamics lower down in the soil profile could be influencing soil respiration. We 

saw changes in the subsoil microbial community in response to warming (Chapter 6), 

but it is the topsoil layer that has seen the reduction in root biomass in response to 

drought (Appendix H Figure 10). Roots can be important in influencing respiration 

both directly and through their influence on soil microbial communities (Bond-

Lamberty et al., 2004), so this could contribute to the unexplained variation in 

respiration rates. Overall, it appears that even small changes in soil bacterial and 

fungal community composition can be associated with changes in critical soil 

functions such as soil respiration. 
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Abstract 

Soils provide important functions, which according to the European Commission 

include: biomass production (e.g. agriculture and forestry); storing, filtering and 

transforming nutrients, substances and water; harbouring biodiversity, (habitats, 

species and genes); forming the physical and cultural environment for humans and 

their activities; providing raw materials; acting as a carbon pool, and forming an 

archive of geological and archaeological heritage, all of which support human society 

and planetary life. The basis of these functions is the soil natural capital, the stocks of 

soil material. Soil functions feed into a range of ecosystem services which in turn 

contribute to the United Nations sustainable development goals (SDG’s). This 

overarching framework hides a range of complex, often non-linear, biophysical 

interactions with feedbacks and perhaps yet to be discovered tipping points. 

Moreover, interwoven with this biophysical complexity are the interactions with 

human society and the socio-economic system which often drives our attitudes 

toward, and the management and exploitation of, our environment.      

Challenges abound, both social and environmental, in terms of how we feed an 

increasingly populous and material world, while maintaining some semblance of 

thriving ecosystems to pass on to future generations. How do we best steward the 

resources we have, prevent them from degradation and restore them where necessary 

as soils underpin life. How do we measure and quantify the soil resources we have, 

how are they changing in time and space, what can we predict about their future use 

and function? What is the value of soil resources and how should we express this? This 

chapter explores how soil properties and processes underpin ecosystem services, how 

to measure and model them and to identify the wider benefits they provide to society. 

Furthermore, we consider value frameworks including caring for our resources.  
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Introduction 

Humanity has had an indelible impact on the earth’s surface, so much so that it has 

been proposed that the planet has entered a new geological epoch, the anthropocene 

(Crutzen 2002). A population of about 7 billion people that will likely grow to 9.6 

billion by 2050 is stressing Earth’s resources. Maintaining the planet in an equitable 

state for human life is perhaps our greatest challenge. Currently, humans have 

transformed 38% of the earth’s ice-free land surface to agriculture, crops and pasture 

(Foley et al., 2011). Production agriculture, and the necessity of producing food for a 

growing population, has had a tremendous impact on our ecosystems and resources, 

especially through the abstraction of water, and by leaving residues. Rockstrom et al. 

(2009) propose that we need a ‘safe operating space for humanity with respect to the 

Earth system,’ and that there exist biophysical planetary boundaries (or thresholds) 

which it is inadvisable to cross if we want to maintain the equitable state. However, 

consideration of a “safe operating space for humanity” should also take into account 

the needs of human society (Raworth, 2012). The natural capital and ecosystem 

services approach is seen as one way of bridging the science/policy divide, improving 

communication, and working toward an aim of living within sustainable boundaries. 

The marriage of ecosystems with the notion of goods and services emerged from the 

economic and social cultural conditions after the Second World War. Of particular 

note was the work by Schumacher which led to the book Small is Beautiful 

(Schumacher, 1973) and the ecological economic perspectives proposed by the stock-

flow, fund-service framework of Georgescu-Roegen (1971); and more recently reviewed 

by Daly and Farley (2011). Eventually, researchers felt it necessary to co-opt the 

language of the dominant ideology of the day in an attempt to increase awareness of 

the value of natural systems to human society. Westman (1977) suggested that society 

could make more informed decisions and policy by incorporating the idea that 

ecosystems offered benefits of social value. The term ‘ecosystem services’ then began 

to emerge in the early 1980s (Mooney, Ehrlich, & Daily, 1997) being used,  ‘to describe 

a framework for structuring and synthesizing biophysical understanding of ecosystem 

processes in terms of human well-being’. Since then, an increasing body of 
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interdisciplinary work has developed that embodies ecology, earth science, economics 

and social science. 

Riding on the back of the mounting wave of both economic globalisation and global 

environmental concern, ecosystem services broke into more widespread awareness 

with the publication of Daily’s classic text Nature’s Services (Daily, 1997). She offered a 

broad definition of ecosystem services - including the ‘conditions and processes’ of 

ecosystems as services (Daily, 1997). She also expressly called the total-use value of 

ecosystems ‘infinite’, but argued for the need to assess the ‘marginal value’ of nature 

(Daily, 1997). Whilst agreeing with Daily on the total welfare value of nature (i.e. 

infinite), Costanza et al. (1997) identified 17 broad ecosystem services categories and 

estimated their value at $33 trillion US dollars annually, much to the chagrin of some 

economists (Spash, 2013). Although not the first, it is probably the most famous 

attempt to place a financial value on ecosystem services, and has shaped subsequent 

attitudes to valuation. It must be noted that they regarded their approximation as a 

minimum estimate, and one which has subsequently been updated to $125 trillion per 

annum; with a yearly loss of services value from land-use change since 1997 placed at 

between $4.3 – $20.2 trillion (Costanza et al., 2014).  

A landmark in the uptake of the ecosystem services concept came with the United 

Nations’ (UN) Millennium Ecosystem Assessment (MEA, 2005). Whilst not an 

attempt to attribute directly financial value to ecosystem services, the Millennium 

Ecosystem Assessment (MEA) was, rather ‘the first attempt by the scientific 

community to describe and evaluate, on a global scale, the full range of services people 

derive from nature’ (MEA, 2005). Shockingly, its evaluation concluded that, of the 

ecosystem services they could reasonably assess, some 60% were in decline (MEA, 

2005). With a more comprehensive list than other previous definitions, the MEA 

attempted to bring some structure and clarity to the concept by devising a four-part 

classification scheme – ecosystem services could now be meaningfully described as 

either provisioning, regulating, supporting or cultural services.      
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Part one: Soils, challenges and the delivery of ecosystem services and 

their value 

Central to the challenge facing humanity and managing the environment is the fact 

that the increasing human population is projected to grow to 9 billion by 2050. This 

combined with changes in life style, is increasing demand for food and other 

resources, especially water. Ensuring food security, whilst maintaining the planet in an 

equitable state for a diversity of life is one of our greatest societal challenges. The 

ecosystem services approach has been heralded as offering a conceptual framework 

that accounts for the provisioning of goods from nature, without neglecting the 

regulating and cultural services that ecosystems provide, by attempting to link 

ecosystems with economic value for policy making. In so doing, it provides a potential 

way to examine trade-offs and impacts between ecosystem goods and services that 

may inform policy.  

Representing the value of the environment to policy makers and the public is often 

difficult, something ecosystem service frameworks seek to address by representing 

how the environment contributes to human wellbeing. Within this approach the many 

benefits humans gain from ecosystems are referred to as ecosystem services (Costanza 

et al., 1997; MEA, 2005). The stocks within the ecosystem that lead to these services 

are referred to as natural capital (Costanza et al., 1997). The underlying theory is that 

as humans see what they gain from ecosystems they will then decide to conserve 

natural capital, thereby leading to better protection of the natural world. The 

increasing popularity of ecosystem services is apparent in the conservation literature. 

A literature search shows that the proportion of papers on ecosystem conservation 

that include the word “service” or “services” increased from 0.4% in 1984-5 through 

7.7% in 2000-01 to 28.1% in 2014-15 (Web of Science search, 15/01/16). A similar 

analysis using Scopus and Google Scholar, found an exponential increase of the 

number of articles on ecosystem services, and an increase in the number of subject 

areas discussing the concept (Chaudhary, McGregor, Houston, & Chettri, 2015). 

Governments and institutions are now using the concept of ecosystem services, and 

natural capital, to shape policy frameworks (Chaudhary et al., 2015; Schaefer et al., 

2015; United-Nations, 2014) However this method of measuring environmental value 
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still has many shortcomings, which may have long-term impacts on decision making 

and the health of the planet (Crompton & Kasser, 2010).  And this is not without 

vehement critics, both within academia (Spash, 2008) and the popular press 

(Monbiot, 2012). 

Soils and natural capital 

The idea of natural capital can be traced back to the 1830’s or earlier (Robinson et al., 

2013), whereas ecosystem services is more recent. Costanza and Daly (1992) broadly 

define natural capital as “a stock that yields a flow of valuable goods or services into 

the future”. In more recent work Costanza et al. (1997) define it as, ‘the stock of 

materials or information contained within an ecosystem’. Attempts to define soil 

natural capital can be found in (Palm et al., 2007), who focused on texture, 

mineralogy and organic carbon. Robinson, Lebron, and Vereecken (2009) considered 

soil in a more fundamental sense to be mass, energy and organisation. Both teams 

considered natural capital to underpin processes and functions for the delivery of 

ecosystem services.   

Soil natural-capital may be thought of as a stock, yet it is very much more varied, and 

resistant to quantification, than that simple word may suggest. Even the relatively well 

characterised mineral element of soil has considerable uncertainties attached to it, 

particularly regarding the rate of pedogenesis. Although some estimates suggest, 

alarmingly, that rates of erosion are 1-2 orders of magnitude greater than soil 

formation in much of the world’s agricultural land (Montgomery, 2007). As if 

problems of quantifying the physical constituents of soil natural capital were not 

enough, the fact that its structure must be considered when assessing its condition, 

and therefore capital value, adds an extra dimension of complexity. Indeed, the size 

and distribution of the porous voids within a given area of soil are an integral part of 

its natural capital value. Pore architecture, as much as, and in conjunction with, the 

elemental aspects of soil, controls processes and functions, and thus the services and 

benefits, that arise from the soils beneath our feet (de Jonge, Moldrup, & Schjønning, 

2009; Lavelle, 2002). Often thought of as separate spheres, the hydrosphere and 

pedosphere in fact interpenetrate one another, confined by the porosity of the soil, 

and it is at this interface, mediated by flows of water, from which originate many of 
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the ecosystem services which we associate with soils (Clothier, Green, & Deurer, 2008; 

Coates et al., 2013). 

Soils and ecosystem services 

Although Daily (1997) was perhaps the first to attempt to classify the ecosystem 

services of soils, this has been followed by other classifications (Andrews, Karlen, & 

Cambardella, 2004; Wall, 2004), especially a number for the purposes of agriculture 

(Swinton et al., 2007). It was Dominati, Patterson, and Mackay (2010) who attempted 

to pull together a combined soil natural-capital and ecosystem-services framework 

(Figure 1). This acknowledged the important cycles of soil formation and degradation 

altering the stock of soil natural capital, which in turn affects the delivery of ecosystem 

services which fulfil human needs. The proposed framework has served as a 

benchmark in soil science. 

 

Fig. 1. Framework for the provision of ecosystem services from soil natural capital. From Dominati et al. (2010). 
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While progress has been made identifying the ecosystem services that soil delivers, or 

helps deliver (Dominati et al., 2014; Robinson et al., 2013), it has proved challenging to 

decide where they contribute in overarching Ecosystem Service typologies. The MEA 

(2005), The Economics of Ecosystems and Biodiversity, or TEEB (Sukhdev et al., 

2010), and The Common International Classification of Ecosystem Services (CICES) 

(Haines-Young & Potschin, 2012) represent the major ecosystem service 

classifications. The MEA placed soils in the supporting services, whereas the TEEB 

emphasises the role of soils in regulating services through erosion prevention and the 

maintenance of soil fertility. The CICES also focuses on the regulating services 

provided by soil, with these contributing to a number of groups in the CICES 

classification, as highlighted in yellow in Figure 2. In their report Haines-Young and 

Potschin (2012) stated that: 

Clarification of the ways soils provide services was a further area 

identified where the structure of CICES might be looked at: The system 

does not currently take account of the services provided by soil very 

well. [Our] soils scientists identified that the services provided by soil 

extend beyond the soil formation and composition service identified in 

the classification. 
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Fig. 2. The section, division and group sections of the CICES classification of ecosystem services. The boxes 

marked in yellow in the group section represent those with soils contributing. From Haines-Young & 

Potschin (2012). 

 

They concluded there was a need to reflect better the status of soil and that there was 

a need to revise the classification. In Figure 3 we attempt to synthesise the goods and 

services identified by Robinson et al. (2013) with the CICES classification. In addition 

to groups and classes existing in the classification where soils contribute (yellow), we 

have added a soil group in provisioning. This highlights that soil resources are widely 

extracted and used for topsoil, peat, turf grass and as a building material, e.g. for 

bricks. We have also brought out the biological resources extracted from soils like 

earth worms and microbes used for biomedical resources. Soils play an important role 

in life cycle maintenance with an estimated quarter of global biodiversity residing in 

soils, and in the regulation of pathogens and diseases. Within soil formation we 

propose focusing on soil production and the release of nutrients, as decomposition is 

dealt with in waste mediation. Soils play a crucial role in climate regulation, both 

through soil moisture, temperature changes, and carbon storage. With regard to 
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cultural services, in addition to the preservation of heritage, they are also relevant as 

burial grounds and potentially in terms of bequest value.      

 

 

Fig. 3. A focus in on the group sections of the CICES classification of ecosystem services, Haines-Young & 

Potschin (2012), containing soils, with suggestions for incorporating more soils information in the green 

boxes based on the ecosystem services soils contribute to identified in Robinson et al. (2013). 

 

One of the challenges regarding the classification of  soils is that the direct use e.g. 

topsoil or peat, is small in comparison to their role as a ‘means’ to underpin the 

delivery of other ecosystem services, e.g. biomass production. This is a concern 

regarding the ecosystem service approach in that, for reasons of seeking 

methodological parity with GDP accounting (Boyd & Banzhaf, 2007), the focus has 
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shifted to the delivery of final goods and services.  This then overlooks the significant 

potential degradation of soil ecosystems in delivering other services, such as the 

provisioning of biomass.   

 

United Nations, Sustainable Development Goals (SDG’s) and the System of 

Environmental Economic Accounting (SEEA) 

Natural-capital accounting may offer a solution to soil degradation being overlooked 

due to the dual problem of simply focusing on final goods and services, and the fact 

that soils are often subsumed into larger ecosystem or biome categories when 

considering ecosystem services (Baveye, Baveye, & Gowdy, 2016). Natural-capital 

accounting may offer a more complete approach to environmental economic-

assessment, one which includes ecosystem services, but also monitors the state of 

natural-capital resources. In 2014, the UN launched the System of Environmental 

Economic Accounts (SEEA) which addresses the fact that GDP, often used as a welfare 

indicator, does not consider degradation. Perversely, degradation such as soil erosion, 

actually stimulates economic activity when remediated and it is therefore counted as a 

gain under GDP. The foundation of the SEEA is the identification of 7 environmental 

asset classes (Mineral & energy resources, Timber, Aquatic, Other biological, Water 

resources, Land cover and Soil). The aim is to assess the extent, volume/mass and 

condition of the resources, and capture the biophysical and economic flows to correct 

GDP through satellite accounts. The SEEA, in combination with the ecosystem 

services approach, has the potential to provide a monitoring and reporting socio-

economic, environmental framework that with the use of biophysical monitoring 

could provide a global monitoring tool. 

If we are to address the United Nations Sustainable Development Goals (SDG’s) and 

attempt to measure their success, then it is only through the use of combined social, 

economic and environmental monitoring tools that we will be able to make 

biophysical and economic assessments, and measure the trade-offs between 

development and degradation. We now have an important conceptual framework 

developing that demonstrates how soils provide functions that deliver ecosystem 
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services that contribute to us achieving the sustainable development goals (Figure 4) 

from (Keesstra et al., 2016).We have modified this figure to include soil natural-capital 

in the central circle, as it is the soil natural-capital that supports soil functioning and 

which is vulnerable to degradation. Obst (2015) pointed out that soils remains an 

under-developed component of the SEEA and there is a job to be done developing a 

natural capital framework for soils that describes soil assets. This should acknowledge 

the important soil cycles, through quantitative assessment of carbon gain and loss, 

nutrient release and soil production and erosion as called for by Amundson et al. 

(2015). Moreover, it must account for the 11 soil threats, considered in Part 2, that can 

degrade our soils and reduce their capacity to deliver earth-system functions and 

ecosystem services.       

 

Fig. 4. The link between soil natural capital, soil functions, ecosystem services and the sustainable development 

goals. Soil threats act to degrade soil natural capital and this limit the delivery of functions and services. 

Adapted from Keesstra et al. (2016).  
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Soil Security 

Concurrent to these efforts to link soils and ecosystem services, McBratney, Field, and 

Koch (2014) argue that soil security must be at the heart of this effort because soils 

underpin the delivery of so many services. ‘Soil security’ is defined in McBratney et al. 

(2014) as maintaining and improving the world's soil resource to produce food, fibre 

and freshwater, contribute to energy and climate sustainability, and maintain the 

biodiversity and the overall protection of the ecosystem. Soils perform important 

functions for humanity as identified earlier. Soils can support the provision of 

ecosystem goods and services both directly and indirectly; whilst some soil processes 

can have a major adverse impact on the delivery of ecosystem goods and services. The 

ability of soils to function can be threatened by human activity as identified in The 

Thematic Strategy for Soil Protection (European Commission, 2006). But something 

all the ecosystem approaches share is the sense that soils are valuable and this needs 

to be articulated.   

Valuing nature or caring for our natural resources? 

The default position of the ecosystem-services approach is to link the environment 

and economy through monetary valuation. This remains a controversial topic 

(Peterson et al., 2010). Soils present an interesting case study given they are an 

economic resource in their own right, as well as supporting major economic activities 

such as food production. Amundson et al. (2015) argued that agricultural soil systems 

are one of Earth’s most valuable commodities. They referenced FAOSTAT, which for 

2012 estimates that the global production of agricultural products was worth nearly 

$3816 billion U.S. dollars. However, agriculture is competing with increasing urban 

and suburban soil demands. Within soil science a number of papers have attempted to 

either value soils and their contribution to the delivery of ecosystem services (Clothier 

et al., 2008; Dominati et al., 2014) (Clothier et al., 2008; Clothier, Green, & Deurer, 

2008; Dominati et al., 2014), or reviewed economic valuation of soils (Robinson et al., 

2014). With regard to linking to the economy, two approaches appear to be emerging. 

One deals with the local scale, for example helping farmers make management 

decisions; often relying on cost benefit approaches. While at the national scale there is 

continued development of the SEEA initiative (United-Nations, 2014).  
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Regardless of the valuation approach, ecosystem-service evaluation relies on the first 

step of biophysical assessment, followed by some form of valuation. With regard to 

valuation, especially economic, we have yet to determine the exact goals and ways in 

which it will help us look after, and manage soil resources. We know soils are a 

valuable resource. Life as we know it would not exist without them, but is monetary 

valuation the best way to express this value? 

The psychology of value 

Due to the way in which human-perception functions, it is possible that financial 

valuation of ecosystems will corrupt their actual value. The relationships between 

values are not random. They can be more, or less, compatible with each other. Ten 

distinct value types have been identified across cultures and countries (Schwartz, 

2006,), within which all values can be placed (Figure 5). This also shows a close 

correspondence to the structure of individuals’ goals (Grouzet et al., 2005). 

Correspondence between these main value-types has been found to be consistent 

across countries, cultures and economic background. Whilst individuals differ in the 

importance they assign to each value (Gollan & Witte, 2014; Grouzet et al., 2005; 

Schwartz, 2006). Invoking one set of values will suppress opposing values, and prime 

values that correspond to the same value-type (Maio et al., 2009). Understanding how 

values correspond with each other is thus essential when discussing ecosystem value, 

as it can have impacts on the behaviour of those listening. Therefore, a long-term 

strategy for environmental protection should appeal to those values which are most 

likely to engender a positive long-term relationship with nature. 
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Fig. 5. Value Systems: Adapted from Schwartz (1992), values are plotted around a circle where the closer they 

are the more compatible they are. Segment titles are in bold and represent a distinct value type. In grey 

are examples of values for each distinct value type. The layout of values is related to two main axes, the 

conflict between openness to change and conservation, and also the conflict between prioritizing the 

physical self and things outside your physicality. 

 

Humans struggle to hold contradictory values in their mind, within their value system, 

at the same time. Therefore discussion of the environment in financial terms will 

suppress intrinsic motivation to help the environment. This can be seen in Figure 5 

where Wealth, situated in Power, is diametrically opposed to protecting the 

Environment, situated in Universalism (Schwartz, 1992). Placing a higher emphasis on 

intrinsic values, situated near Self-transcendence in Figure 5, as opposed to extrinsic 

values, situated near Physical Self, has been related to a higher willingness to pay to 

protect the environment (Ku & Zaroff, 2014). However it must be noted that this study 

measured self-reported behaviour, which only coincides with actual behaviour 20% of 

the time (Kormos & Gifford, 2014). Furthermore, when confronted with actual 

demands for payment, people are potentially more powerfully primed to think in 

terms of extrinsic values, which will reduce willingness to pay (Ku & Zaroff, 2014). 

In the discussion of the value of the environment we have to think carefully about 

what kinds of value we wish to place on it. If we appeal to one value we also appeal to 
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the values corresponding to the same main distinct value type. This could be powerful 

in bringing about change. For example appealing to environmental concerns arguing 

for car-sharing, also increased observed rates of recycling (Evans et al., 2013). However 

appealing to a set of values that opposes those already held can reduce the power of 

the pre-existing values. For example, providing monetary incentives to behave in an 

environmentally friendly way can ‘crowd out’ other motivations to be environmentally 

friendly, particularly when positive incentives are too small (Rode, Gómez-Baggethun, 

& Krause, 2014). In order to convey the value of ecosystems we have to be aware of 

pre-existing values, which may vary by demography, and incorporate tools such as 

goal setting, social modelling and prompts (Osbaldiston & Schott, 2012).  

Therefore in order to promote the environment we need to appeal to pre-existing 

values, and preferably intrinsic values. But what about soil? Few people have an 

understanding of the intrinsic value of soil, therefore it may make sense to appeal to 

pre-existing extrinsic values. However this may still have undesirable side effects, 

making people less likely to engage in other pro-environmental behaviour and 

reducing altruism towards other members of society both present and future. Soil 

conservation usually involves landowners, who may have different motivations than 

the students so beloved of psychology experiments. In Sweden, landowners had value 

structures that tended towards conservation and self enhancement, and usually 

engaged in biodiversity conservation projects for altruistic concerns (Johansson, 

Rahm, & Gyllin, 2013). In order to get people with these types of values involved in 

conservation they need to be operating within a context that is supportive of such 

behaviour, making monetary incentives a sensible option (Johansson et al., 2013). 

However if the group targeted already has strong intrinsic motivation to help the 

environment then building upon that would be more effective. 

It will obviously be difficult to target the information provided according to the value 

system of the beholder. However, the current trend of defaulting to a financial, 

extrinsic perspective can devalue the environment and remove existing intrinsic 

motivation to protect the environment. Already we see some undesirable side-effects. 

When the Pope announced that it was a moral obligation to combat climate change, a 

Republican presidential candidate responded: ‘I don’t get economic policy from my 
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Bishops, or my Cardinal or my Pope’ ("‘I won’t take the Pope’s advice on climate 

change,’ says Jeb Bush," 2014) That may be true, but when did caring for the 

environment become purely an economic concern?  

This was clearly not the intention in the 1970s with environmentalists discussing 

ecosystem services who, rather, sought a pedagogical tool to help society appreciate 

the value of ecosystems, and highlight the imperative of protecting them (Gómez-

Baggethun et al., 2010). Yet, as the notion of ecosystem services has been inexorably 

drawn into, and redefined, by the wider societal shift towards neoliberal economics, 

we have been left with a framework which has commodified ecosystem services and 

ignores the work done by the supporting services and ecosystem functions which 

produce them (Peterson et al., 2010) 

Society often seeks a ‘silver bullet’ solution to environmental problems. Ecosystem 

accounting is not a silver bullet in decision making, especially because there may be 

lack of care engendered if the environment is represented solely in financial terms. 

However, it forms one lens through which to consider environmental challenges.  

The value that an individual places on the environment will vary across people and 

cultures, yet the choice to represent the environment solely in financial terms could 

consistently engender a lack of care for nature.  

The use of the ecosystem services concept shifts perceptions away from the inherent 

value of nature, particularly in those individuals used to thinking in terms of 

commodities. This risks engendering a lack of care towards to the environment. 

A Republican presidential candidate may not represent the average view point, but 

this should serve as a reminder of the lack of care which may be engendered if the 

environment is represented solely in financial terms. 

There may be lack of care engendered if the environment is represented solely in 

financial terms. 

Quantification of value may be important to convince people of the value of the 

environment, yet too often a quantified value is taken to mean a monetary value. 

Indeed, the very notion of being able to reduce the pluralistic value of the 
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environment into simple monetary terms without distortion is questionable (Spash, 

2008). Alternatives do exist: such as promoting an attitude of care towards the 

environment, which may foster a more powerful long-lasting relationship when 

considering conserving and protecting resources such as soil (Bellacasa, 2017). 

Caring for soils 

In human-environment relations, care has been mostly thought of as delivered by 

humans to the environment. But humans need everyday care to survive, and it is not 

difficult to see that much of this care would not be possible without the biophysical 

world, including living soils. Care is however based on very different values to those 

notions normally associated with appraising soils’ contribution to human well-being 

such as: economic worth, natural capital, or provision of services. More than any of 

these notions, care denotes a necessary relation for the basic survival of living beings. 

In that sense, thinking about human-environment relations as care has different 

consequences. Care is a multi-layered notion. It involves work and practice, as in 

‘taking care’ of things. It is also affective and emotional, as when we care about 

something. And also it has ethical value implying responsibility (Tronto, 1993). It is 

also an ecological obligation (Bellacasa, 2017). Humans and soils are involved in 

relations that involve all of those dimensions. In a world so affected by human activity, 

soils cannot live without human care at all these different levels. But the work of care 

that living soils effectively perform for the web of life is also essential for survival and 

subsistence. And while the ethical responsibility of soil care is a human affair, its 

concrete realisation depends on how different soils respond.  The care we put into the 

soils, or the absence of care, its neglect, will inevitably affect the capacity of soils to 

care for all the living beings and processes depending on it. 

 Linking human-soil relations with care emphasises human interdependency with the 

environment. Looking at soil value from the perspective of the functions or services 

which produce human well-being represents an important attempt to change the 

parameters of a purely economic valuation of natural resources and limited to 

extraction, production, and consumption. But it has not proved enough to alter the 

anthropocentric and devastating reduction of non-human entities to ’resources’. 

Whether we speak of the services, care, or functions that soils provide in contribution 
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to human well-being, we should consider the possibility of having an obligation to 

“give back” to soils as much as we receive from them. Relations of care emphasise this 

condition of liveable interdependency. They invite us to confront the split between 

nature and culture that posits the human as a consumer of natural resources (S. 

Jackson & Palmer, 2015). Emphasising that we live in an interdependent web of care 

with biophysical entities of all kinds urges an ethical, emotional and practical shift 

towards a more eco-centric relationship with soils. 

Part Two: Biophysical assessment of soil change and the delivery of 

ecosystem services 

Threats to soil natural capital and function 

The protection of soil is of significance for human well-being and social and economic 

development (Schwilch et al., 2016).  Within the 17 UN Sustainable Development 

Goals (SDG), soils have a strong relation with SDG 2, 3, 6, 13 and 15 (Bouma & 

Montanarella, 2016). Keesstra et al. (2016), present steps on how the soil science 

community can meet these goals (Figure 4). The European Commission (2006) 

identified eight main threats to soil. These threats were erosion, local and diffuse 

contamination, loss of organic matter, loss of biodiversity, compaction and other 

physical soil deterioration, salinisation, floods and landslides, and sealing (European 

Commission, 2006). In some estimates, erosion, organic matter decline, salinization, 

landslides and soil contamination alone might cost the EU up to €38 billion annually 

(European Commission, 2006) and the majority of these costs are borne by society. 

Recognizing the soil degradation and its transboundary nature, the EC declared in 

2006 that for sustainable development, soils need to be protected from degradation. 

Climatic factors and human actions both threaten soil functioning and natural capital. 

These threats should not be regarded as distinct. They are interlinked in the sense that 

threats to soil from human activity can contribute to climate change, and, in turn, 

climate change causes or intensifies threats to soil. 

Soils are under increasing pressure from a wide range of human activities, which 

undermine their long-term sustainable use. Policy directly or indirectly affects soil 

threats by enabling and incentivising, or by prohibiting and limiting, a particular 



 

299 

 

human activity, thereby making activities more or less attractive to land users. Policy 

regulations therefore, are a strong instrument in providing opportunities for soil 

protection. But they can conversely put significant pressure on soils if they are 

wrongly targeted, and induce overexploitation of resources. From a wider perspective, 

policy can also affect soil threats by driving changes in land use. The Thematic Strategy 

for Soil Protection (European Commission, 2006), being the main soil-focused EU 

instrument, aims to protect soils while using them sustainably, through the prevention 

of further degradation, the preservation of soil functions and the restoration of 

degraded soils (European Commission, 2006; Jones et al., 2012). There is a need to 

promote the four pillars of The Soil Thematic Strategy. These are i) more awareness 

raising campaigns; ii) supporting soil research projects; iii) integration of soil science 

in policy making, and iv) improved legislation (European Commission, 2006). Much 

progress has been made since 2006 on the first three pillars, but no initiatives have 

been implemented for the legislation at the European scale. 

Socio-economic and cultural drivers directly or indirectly affect soil threats, having a 

strong link with policy. Feeding an increased population puts pressure on food 

production through agricultural intensification. Additionally population growth 

contributes to the pressures on land resource use through urban growth, mining, and 

tourism, thereby potentially degrading soils and increasing instances of soil sealing, 

contamination and salinization. 

A major challenge in understanding and describing the relationship between the 

various threats to soil and the soil functioning, is how to quantify the interactions 

between the various threats, and how these interactions in turn, affect soil functions. 

Clarifying these relationships is essential in order to gain a holistic view of the status 

of threatened soils and the interactions between the different threats and functions of 

the soil. Table 1 presents an overview of the main challenges threatening soil function. 

Analysis of the effects of these threats to soil functions is beginning to emerge. By 

linking the status of soil, in terms of the degree to which it is threatened, with soil 

functions and ecosystem services, the relationships between those processes driving 

threats to soil, and thus to the societal benefits derived from soil, may become clearer. 
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Table 1. The main threats to soil functions.  

Soil functions  Main threat  References  

Biomass production (in agriculture 

& forestry) 

Soil erosion by water, soil 

sealing, salinization, 

compaction 

Gardi, Panagos, Van Liedekerke, 

Bosco, & De Brogniez, 2015; Li, Pu, 

Zhu, & Zhang, 2012; Boardman & 

Poesen, 2007; Håkansson & 

Reeder, 1994 

Storage, filtering and 

transformations of nutrients, 

substances and water 

Soil sealing, contamination, 

compaction 

Etana et al., 2013; Reeves & Baker, 

2000 

Biodiversity (such as habitats, 

species, and genes) 

Decline in OM and biodiversity 

loss 

Jeffery et al., 2010; Primavesi, 2006 

Physical base for construction  Desertification, soil erosion by 

water, floods and landslides 

Morgan, 2006; Van-Camp et al., 

2004 

Source of raw materials Floods and landslides  Stankoviansky, Minár, Barka, Bonk, 

& Trizna, 2010 

Acting as carbon pool (store and 

sink) 

Decline in OM and biodiversity Jeffery et al., 2010; Primavesi, 2006 

Archaeological & geological 

heritage 

Soil erosion, floods and 

landslides, compaction 

Camera, Apuani, & Masetti, 2015; 

Sdao & Simeone, 2007 

 

Monitoring of soil natural capital, state and change:  

In this era of ever-increasing pressure on natural ecosystems and soil it is essential to 

monitor ecosystem changes over time. Soil is an integral part of natural ecosystems, 

and is required for biomass production whilst also representing a valuable store of 

carbon and other resources. The need to produce food for the industrial revolution 

meant that early work on soils focused on inventory and the suitability for crop 

growth, which evolved into soil surveys in many countries in the 20th C. If ecosystems 

are to be managed for long-term sustainability then an understanding of the long-

term response of soil to environmental change is essential. This requires a shift in the 

way we observe soils, moving from inventory to monitoring of change, and to 

experiments to understand the long-term response of soil to change. The need for this 

is identified in the first report by the UN Food and Agriculture Organisation (FAO), 

Intergovernmental Technical Panel on Soils (ITPS, 2015). This proposed that the 

following four actions are the greatest priorities to stabilize or reverse over 

exploitation of global soil resources: 
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1. Minimize further degradation of soils, and restore the productivity of soils that are 

already degraded in those regions where people are most vulnerable. 

2. The global stores of soil organic matter (i.e. soil organic carbon (SOC) and soil 

organisms) should be stabilized or increased.  

3. Act to stabilize or reduce global N and P fertilizer use while simultaneously 

increasing fertilizer use in regions of nutrient deficiency.  

4. Develop monitoring systems to determine the current state and trend of soil 

condition. Regional assessments used in the report often predate the 1990s using 

observations predating the 1980s.   

This fourth recommendation requires that we not only consider ‘state’, but that we 

must monitor ‘change’. How else will we know if interventions are effective? An 

increasing number of monitoring programs around the world are beginning to factor 

this in. In the UK, the Countryside Survey (CS) was pioneering in this context and has 

provided evidence of soil change since 1978 (Emmett et al., 2010; Reynolds et al., 

2013). Unlike systematic surveys used for inventories, CS is statistically robust, 

allowing reporting of uncertainty. The robust design has led to the adoption of similar 

designs at the EU level, for example the Land Use/Land Cover Area Frame Survey 

(LUCAS) topsoil database which covers 25 member states of the European Union. This 

provides a basis for soil-related policies (Tóth, Jones, & Montanarella, 2013). 

Quantifying the state and change at global scales is challenging, as we simply do not 

have the data for most countries. Amundson et al. (2015) made an important 

contribution by attempting to quantify state and change at a global scale for soil 

carbon, phosphorous and degradation. They argued that the expansion of urban 

centres, often termed ‘soil sealing’, is removing soil from other uses. In Europe, for 

example, this is now considered to cover on average 9 % of the land surface (Scalenghe 

& Marsan, 2009). Land-use change in the form of creating new cropland is one of the 

major drivers of imbalances in the soil carbon cycle (Gottschalk et al., 2012), along 

with accelerated rates of soil erosion (Oldeman, 1994). Whilst according to Amundson 

et al. (2015), phosphorus, critical to plant growth, is unevenly distributed and supplies 

depend on dwindling geological sources. This global picture of soil degradation is 
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borne out by the national data we do have. Bellamy, Loveland, Bradley, Lark, and Kirk 

(2005) and Reynolds et al. (2013) both reported a decline in arable-soil carbon in the 

UK. Declines were also observed in Belgium (Goidts & van Wesemael, 2007) between 

1955–2005; in Flanders (Sleutel et al., 2003) between 1989-2000, and in arable and 

pasture systems in the French mountains (Saby et al., 2008) between 1990–2004. 

Whilst we focus mostly on soil organic carbon, it is important to recognise that 

inorganic carbon is also an important constituent of many soils (Rawlins et al., 2009), 

and it has also been observed to be in decline for instance in China (Yang et al., 2012).  

The importance of ‘state and change’ monitoring, such as the Countryside Survey 

(Emmett et al., 2010) is that it shows we cannot have everything, and that we need to 

make choices. This is made clear by the analysis from Maskell et al. (2013)(Figure 6). 

The ecosystem service indicators alter, often in a non-linear way with proportion of 

intensive land use (Fig 6a). All decline, other than production, with intensification. 

Figure 6b&c goes on to show that changes in moisture inputs, moisture regime, or that 

alteration of soil pH would change the service delivery balance. At no point do we get 

everything. In order to make choices we therefore need decision support, which 

requires models to help predict the outcomes of interventions. 

 

Fig. 6. Response curves of mean ecosystem service indicators per 1-km2 across Great Britain, fitted using 

generalized additive models to ordination axes constrained by; (a) proportion of intensive land (arable 

and improved grassland habitats) within each 1-km square from CS field survey data; (b) mean long-

term annual average rainfall (1978–2005); and (c) mean soil pH from five random sampling locations in 

each 1-km square. All X axes are scaled to the units of each constraining variable. Adapted from Maskell 

et al. (2013)  
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Modelling: InVEST, LUCI and ARIES 

Soil attributes are a critical component required as input data to model many 

ecosystem services. Carbon stocks can be directly modelled from soil type using look-

up tables and assumptions about soil depth. This is the most commonly applied 

approach for soil C. However, since soil properties play a role in governing the 

ecosystem functions which underpin many of the regulating services, soil type is often 

used as a proxy to model these services on a spatial basis. For example, soil properties 

dictate how water moves through landscapes (infiltration rates, water storage, runoff), 

what that water takes with it (soil erosion, nutrient and pathogen transport into 

rivers), and the fluxes of the principle greenhouse gases (CO2, N2O, CH4). 

There are a wide variety of ecosystem service (ES) modelling tools available, ranging 

from basic spreadsheets such as the Ecosystem Services Review (Landsberg et al., 

2011), to more complex spatial models, which can highlight the key areas within a 

study site contributing to each service. Three of the main spatially explicit ES 

modelling tools are InVEST (Sharp et al., 2016), LUCI (Sharps et al., 2017) derived 

from the Polyscape framework described in (Jackson et al., 2013), and ARIES (Villa et 

al., 2014). These models can be used to investigate the potential impacts of different 

management scenarios, for example, demonstrating how changes in soil properties 

can affect service provision, or how soil type mediates the effects of land-cover change. 

The models can produce maps of service provision and quantitative outputs, including 

biophysical and (for some services) economic values. In the following paragraphs we 

briefly review these models and show how soil information contributes to model 

outputs. 

ARIES - ARtificial Intelligence for Ecosystem Services 

ARIES can be more accurately described as a modelling framework, which contains a 

number of ecosystem service modelling applications. A basic principle underlying the 

ARIES framework is its consideration of multiple aspects of ecosystem service delivery: 

source, sink, use and flow. Sources are the aspects of the environment that produce 

the service, sinks are aspects of the environment which detract from, or reduce the 

amount of service. Use is the amount of service used by people, and flows are the 

physical flow-paths or other quantification of how the service reaches the users. The 



 

304 

 

fundamentals of the approach are outlined in Villa et al. (2014) as an extension of 

ecosystem-services science with a stated aim to renew its focus on beneficiaries and 

the spatial and temporal dynamics of flows. Numerous individual service models have 

been developed within ARIES and it has been applied worldwide in many case studies, 

and in multi-service comparisons e.g. Balbi et al. (2015). Many of the original service 

models use a spatial Bayesian modelling framework. However other process models 

can be incorporated by model wrapping and some, such as the dynamic global 

vegetation model LPJ-GUESS, which models carbon and water fluxes, have been hard-

coded into the software.  

Key features of ARIES include the ability to model service flow, flexibility of model 

development, the ability to incorporate expert knowledge into quantitative models, 

use in data-poor situations, and representation of uncertainty in model outputs.  

Service flow is poorly captured in many other ecosystem service models at present, but 

there is an increasing focus on improving calculation of service flows in ecosystem 

service assessments (Bagstad et al., 2013). The flexibility of the modelling approach 

can be considered both an advantage due to the ability to write new models or adapt 

existing models to new applications, but can also be considered a disadvantage since 

there is a certain time investment required to be able to run and use the models. 

However, there are plans to release an on-line version with a library of models which 

could be run with existing (usually global) datasets, but with the capability to load 

one’s own datasets for bespoke applications. Use of the Bayesian modelling approach 

confers three advantages. The probabilistic nature of Bayesian approaches means that 

expert input can be used to generate models for certain services that are otherwise 

difficult to model, like cultural services (Balbi et al., 2015). It also means that once 

models have been developed, they can be applied in areas where data is missing or 

patchy. Lastly, the probabilistic approach allows explicit quantification and mapping 

of uncertainty in the model outputs, which can be published alongside maps of the 

service itself (e.g. Sharps et al., 2017). 

InVEST – Integrated Valuation of Ecosystem Services and Tradeoffs 

InVEST is a freely available suite of ecosystem services models, developed by the 

Natural Capital Project, a partnership between Stanford University and the University 
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of Minnesota, The Nature Conservancy, and the World Wildlife Fund. 

(http://www.naturalcapitalproject.org). InVEST combines spatial data on land use and 

land cover (LULC) patterns with information on the biophysical processes supplying 

the services and service demand to provide outputs in biophysical or economic terms. 

The models can be used as stand-alone tools, or within ArcGIS, and can be run 

individually for each service. The spatial resolution of the models is flexible and 

models can be run at local, regional or global scales, depending on available input 

data. InVEST also has a detailed and comprehensive user guide, with default data 

available for a number of model inputs (Sharp et al., 2016). 

This modelling tool is widely used. Posner et al. (2016) reported that 19 different 

InVEST models were run 43,363 times in 104 countries over a 25-month period (June 

2012 - June 2014). There are many published studies available, including determining 

how changes in climate may affect hydrological service delivery in a semi-arid basin in 

NE Spain (Terrado et al., 2014), investigating how agricultural expansion may impact 

on biodiversity and carbon storage in Brazil (Chaplin-Kramer et al., 2015), and 

demonstrating how catchment water quantity and quality vary under a number of 

land-use change scenarios in China (Zheng et al., 2016). 

There are currently 18 InVEST ecosystem services models,plus a number of ‘helper 

tools’, available for terrestrial, marine, freshwater and coastal environments, including 

examples of cultural, provisioning, supporting and regulating services. Of these, there 

are 8 models that require information on soil properties (for example, soil erodibility; 

soil fertility; soil depth; soil carbon; soil type) as a data input (see Table 2). InVEST is 

an open-source tool and uses Python scripting. Therefore while the current models 

can be freely downloaded by users, there is potential for adapting models further for 

individual use.    
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Table 2. Soil data-sets used in the InVEST ecosystem service model, the ecosystem service it assesses and the potential for future development.  

Main soil data it uses Main ecosystem service assessment that the soil layer 

contributes to 

Potential for development 

Carbon density in soil (Tonnes/ha) per land 

use/land cover class. 

 

 

Carbon storage in soils and biomass (tonnes per grid 

cell). 

Results are as detailed as the land classification used. 

Classes could be further split by soil type, elevation or 

management. 

Carbon storage in soil (Mt of CO2 e/ha) per 

land use class; accumulation rate (Mt of 

CO2 e/ha-yr), % disturbance and half-life of 

carbon emitted within soil per land 

use/land cover class. 

Coastal blue carbon: carbon stock, carbon accumulation, 

carbon emissions, net carbon sequestration (all Mt 

CO2 e/ha) and net present value (currency/ha).  

Currently uses a simplified approach for modelling 

dynamics of the carbon cycle and is based on a number of 

assumptions, e.g. carbon is assumed to be stored and 

accumulated linearly through time.  

Current global model driven mostly by 

climate data. Next steps will be to 

incorporate soil (fertility and depth) and 

topographic data. 

Crop production: crop yield per grid cell, financial 

analysis (yield, costs, returns and revenues per crop), 

nutritional contents (based on values entered by the 

user for 1 tonne of crop biomass). 

Model currently under active development. Further field-

level data is required to run a more fine-scale model. 

Carbon density in soil (Tonnes/ha) per land 

use/land cover class. 

 

 

Forest carbon edge effect: Carbon storage in soils and 

biomass (tonnes per grid cell). 

This model is an update of the carbon storage model, 

allowing for the degradation of carbon that occurs in 

tropical forests due to edge effects. 
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Nutrient retention due to biochemical 

degradation in soils (value between 0 and 

1); distance (m) after which soil is assumed 

to retain nutrient at maximum capacity. 

Nutrient delivery ratio (nitrogen or phosphorus): total 

nutrient load in the watershed (kg yr-1); total nutrient 

export from the water shed (kg yr-1). 

Requirement for more accurate export coefficients, from 

local studies if possible. Sensitivity analyses are 

recommended to investigate how changes in input data 

affect final outputs. 

Soil erodibility (K)  

(t ha h ha− 1 MJ− 1 mm− 1); fraction of topsoil 

particles finer than coarse sand (calibration 

parameter).  

Sediment delivery ratio: total sediment exported to the 

stream (tonnes per grid cell); Sediment retention (tons 

per watershed).  

Currently based on the revised USLE (universal soil loss 

equation) (Renard, Foster, Weesies, McCool, & Yoder, 

1997), which is widely used but has limitations (doesn’t 

represent all possible erosion processes).  

Root restricting layer depth of soil (mm); 

plant available water content of soil 

(fraction 0-1).  

Water yield: total annual water supply per watershed 

(m3).  

The current model simplifies water consumption (one value 

per land class).  

Soil hydrologic groups (based on hydraulic 

conductivity and soil depth); Curve number 

(CN) for each soil group.     

Seasonal water yield: outputs are indices for the relative 

contribution of each grid cell to base flow (occurs during 

dry weather) and quick flow (present during or just after 

rain events). 

The model does not currently provide quantitative 

estimates of flow. 
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LUCI - Land Utilisation and Capability Indicator 

The LUCI (Land Utilisation and Capability Indicator) tool was developed to synthesise 

biophysical data to inform on ecosystem service delivery. The model is designed to be 

able to run with a limited number of data inputs, with a user-friendly GIS interface. 

Public release of the model and documentation is planned for 2017. It is designed as a 

planning tool and is specifically tailored to investigate the impact of farm scale 

interventions on catchment scale function. To do this, LUCI explicitly tracks the 

lateral as well as vertical movement of mass (water, sediment and nutrients) through 

the landscape at spatial resolutions on the order of meters. Soils data is important in 

underpinning the outputs from LUCI along with topography, landcover and climate 

data. At present soil data must be supplied to match country specific classifications for 

England and Wales or New Zealand. There are plans to support global data using the 

World Reference Base (WRB) soils format.  The main ecosystem services modelled by 

LUCI are agricultural productivity, carbon storage and sequestration, flood risk 

mitigation, nutrient runoff mitigation, and habitat suitability and connectivity. Of 

these, the tools for agriculture, carbon, and habitat suitability depend significantly on 

soil functioning. Table 3 is based on the version using the England and Wales soil-

survey data, and shows which ecosystem services the soil data currently contributes 

to. In New Zealand, the tool has been developed to incorporate influence of soil on N 

and P exports, and soil hydrological function. These enhancements have not yet been 

implemented for UK soil (Trodahl, Deslippe, & Jackson, 2016). Trade-offs, impacts, 

and synergies between individual service provisions can be mapped spatially. The 

model has been applied at national scale for Wales to inform implementation of agri-

environment activities under the Glastir Monitoring and Evaluation Program (Emmett 

et al., 2014). It can therefore be seen that input data related to soil properties are 

required for many models, from agricultural production to annual water yield, 

highlighting the important contribution of soil to a wide variety of ecosystem services. 
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Table 3. Soil data sets used in the LUCI ecosystem service model, the ecosystem service it assesses and the potential for future development. 

 

Model and soil 

data it can use 

Main soil data it uses Main ecosystem service 

assessment that the soil 

layer contributes to 

Potential for development 

LUCI, soil survey of 

England and Wales 

Soil water holding characteristics and 

fertility (by soil association, classified 

based on expert opinion and 

literature), slope and aspect 

Agricultural productivity 

potential: category high-low 

Bring in effects of slope position (areas accumulating flow 

more at risk of waterlogging) 

Currently based on dominant soil series in association- 

could add error bounds for other series components 

LUCI Landcover and soil association 

combination (classified based on 

average for that combination from 

national datasets) 

Carbon storage in soils and 

biomass: kg m-2, category 

high-low 

Include data on slope impacts on soil depth, and estimated 

effects of different management within the landcover 

classes. Metamodeling of expected influence of climate 

change  

LUCI Landcover and soil association 

combination (classified based on 

average for that combination from 

national datasets) 

Carbon sequestration 

potential: kg m-2, category 

high-low 

 

LUCI Soil type, spatial units for calculation 

(Simpson’s and Shannon’s indices are 

calculated based on the chosen level of 

disaggregation of soil type) 

Soil diversity: values for all 

selected indices in each 

landscape unit. 
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Comparison of models 

As the range and complexity of ecosystem-services modelling tools increases, it is 

important that intercomparisons between models are made, ideally for the same site 

and services, to help users choose the most-suitable tool for their needs. Vigerstol and 

Aukema (2011) and Bagstad, Johnson, et al. (2013) provide useful overviews of 

modelling tools, covering model inputs, outputs and how the models can be applied. 

The InVEST and ARIES tools were compared for three services (carbon storage, water 

supply and scenic viewsheds) in a semi-arid river basin in Arizona, USA (Bagstad, 

Semmens, & Winthrop, 2013), with similar overall conclusions reached for each 

service using both tools.  

Sharps et al. (2017) also compared modelling tools, running ARIES, LUCI and InVEST 

for three services (water supply, carbon storage and nutrient retention) in a temperate 

North Wales catchment with a wide variety of land-use types. This study focused on 

the range of different outputs that each modelling tool can produce per service, and 

on validating the model outputs against observed data. Using carbon as an example, 

the mapped outputs from the ARIES, InVEST and LUCI carbon models can be seen in 

Figure 7. InVEST and LUCI provide directly comparable maps of carbon stock for the 

study site (Fig 7 a & d, and b & e). There were some differences between the output 

maps, both in terms of spatial pattern and in quantities of carbon stocks, particularly 

for carbon stocks in biomass and soil at a depth of 30cm. This is thought to be due to 

differences in the approaches used between the two models, but highlights that not all 

models will give the same answer, even for a relatively simple service to model such as 

carbon. The LUCI carbon model is based on soil type and (aggregated) land use 

combinations, whereas the InVEST model uses only land-use data. Despite the 

differences in spatial distribution of carbon from the two models, the quantitative 

outputs for InVEST and LUCI (total carbon stocks aggregated to catchment level) were 

similar and within <10% of each other. LUCI can also provide a map of carbon 

sequestration potential (Figure 7), highlighting areas where existing carbon stock is 

high (red), and therefore with less potential for change, and areas where there is 

potential for increased carbon if the land-use changed (green). The ARIES model 

predicted carbon density (g/kg) in the top 15cm of soil (Fig 7g), rather than carbon 
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stocks. Both InVEST and ARIES can produce maps of uncertainty (Fig 7c & h 

respectively), based on the model inputs used for carbon values per land use type. 

 

Fig. 7. Carbon stocks for the Conwy catchment, including soil and above-ground, below-ground, and dead 

vegetation for: a) InVEST, carbon stocks (kg m− 2) to 30 cm soil depth; b) InVEST, carbon stocks (kg m− 

2) to 1 m soil depth; c) InVEST, variance associated with carbon stock estimates to 1 m depth (kg m− 2); 

d) LUCI, carbon stocks (kg m− 2) to 30 cm soil depth; e) LUCI, carbon stocks (kg m− 2) to 1 m soil depth; 

f) LUCI, carbon sequestration potential (30 cm depth). Carbon concentration: g) ARIES, expected carbon 

concentration in topsoil, 15 cm depth; h) ARIES, uncertainty measured as coefficient of variation (%). 

 

ARIES, InVEST and LUCI each have different strengths. Customised models can be 

developed using ARIES, if the user has the technical skills. This tool is also a good 

option if data are scarce, and it can explicitly model the flow of services such as service 

use relating to water-based services through the catchment. InVEST can model a wide 
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variety of services, and the manual with default input data is very helpful for new 

users. This is one of the few tools that currently models some cultural services. And it 

can also provide economic valuations as an output. LUCI produces traffic-light maps, 

which allow easy interpretation of model outputs for decision makers. LUCI also has a 

unique trade-off tool that can demonstrate the potential impact of different scenarios 

on multiple services, highlighting areas where they may be “win-wins,” with multiple 

services benefitting, or trade-offs, where one service is improved while another is 

reduced. There are also some differences in modeling approaches, for example in the 

scale of model outputs. The InVEST water supply and nutrient-delivery ratio models 

run at the grid-cell level, with outputs given per watershed, whereas ARIES and LUCI 

can provide an output for every point in the landscape.    

Overall, the choice of modelling tool depends on the question, available input data 

and the scale of outputs required. Sharps et al. (2017) recommend further model 

comparison studies, running tools for a wide range of services, including cultural 

services (such as recreation or viewsheds), and also testing models across multiple 

scales, for example from sub-catchment to sub-continental. There is increasing 

interest in running ensemble suites of ecosystem service models. This is similar to the 

approach used in running global circulation models (GCM) for climate simulations, to 

capture some aspects of the variability in outputs between models and to start to 

address issues of uncertainty in model outputs. 

Joint environmental and socio-economic modelling at national to global scales 

The ecosystem services approach recognises that we live in a coupled socio-economic 

– environmental system. Large-scale ecosystem service models take an integrated, 

systemic approach to understand better the linkages and feedbacks between different 

biophysical and human systems. An example of a model attempting this is the Global 

Unified Meta-model of the BiOsphere (GUMBO). The model divides the earth’s 

surface into the 11 biomes for assessment. The pedosphere is not dealt with as an 

explicit module, but it is included in the lithosphere. Although predictions for soil 

formation, carbon and nutrient fluxes and weathering and erosion processes are 

included (Boumans et al., 2002). It provides a bold attempt to model the earth system 



 

313 

 

in an integrated way, incorporating biophysical characteristics of the earth system and 

socio-economic aspects of humanity’s activities. 

The importance of this integrated approach is further demonstrated by the CLIMSAVE 

Integrated Assessment Model (IAP) for Europe (Harrison, Dunford, Holman, & 

Rounsevell, 2016). The IAP integrates models of agriculture, forestry, urban growth, 

land use, water resources, flooding and biodiversity within a spatially-explicit software 

environment that operates on 10 x 10 minute spatial grid for the countries of the 

European Union, plus Norway and Switzerland. It can be used to simulate the impacts 

of different climate and socio-economic scenarios on a wide range of sectoral and 

ecosystem-service output indicators. The linking of the different sectoral models 

enables analysis of cross-sectoral interactions and assessment of potential trade-offs 

between ecosystem services. It is designed as an interactive web-based tool that 

researchers and stakeholders can use to explore and understand cross-sectoral 

vulnerability to climate and socio-economic change and how it might be reduced by 

various adaptation options. 

Cross cutting and Dealing with Complexity 

In a recent article in Nature, Schmidt et al. (2011) wrote that  

‘soils are now in the ‘front line’ of global environmental change—we 

need to be able to predict how they will respond to changing climate, 

vegetation, erosion and pollution so that we can better understand 

their role in the Earth system and ensure that they continue to provide 

for humanity and the natural world’.  

They recognized that although only a thin layer of material at the earth’s surface, soils 

like many interfaces play a pivotal role in regulating the flow and transfer of mass and 

energy between the atmosphere, biosphere, hydrosphere and lithosphere. Moreover, 

the structure and organization of soils leaves an important imprint on the earth’s 

surface in terms of how land is used, and how ecosystems develop. Soils help regulate 

the Earth’s physical processes, such as water and energy balances, and act as the 

biogeochemical engine at the heart of many earth-system cycles and processes on 

which life depends. Some soil processes contribute to the delivery of ecosystem goods 
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and services directly, whilst other soil processes impact the delivery of goods and 

services. Soils may actually be ‘used up’ through topsoil or peat extraction, or they may 

serve as a ‘means’ to the delivery of an ecosystem service as with filtration, and 

subsequently becoming degraded. This section examines how soil processes impact 

soil and ecosystem function and the production of goods and services of benefit to 

humanity.  

According to FAO soils provide the following eleven functions: 1. Water purification 

and soil contaminant reduction, 2. Climate regulation, 3. Nutrient cycling, 4. Habitat 

for organisms, 5. Flood regulation, 6. Source of pharmaceuticals and genetic resources, 

7. Foundation for human infrastructure, 8. Provision of construction materials, 9. 

Cultural heritage, 10. Provision of food, fibre and fuel, 11. Carbon sequestration. 

How well a soil is suited for any of these functions depends on the feedback with the 

climate and thus location on the globe, and also on its composition. While all soils 

contain a different mixture of sand, silt, clay and organic matter, it is the 

heterogeneity of that mixture, its chemical composition in combination with growing 

plant roots and the activity of soil organisms, effectively a soil’s structure, that make 

up the complexity of soil processes. For example one of the soil’s ecosystem goods and 

delivery services is the storage and filtering of water.  Soils play an essential role in 

regulating how much water infiltrates the soil, how much will become surface runoff, 

how much is available for plant growth, and what quantity will flow towards 

groundwater. Research on the variability of soil moisture crosses a range of scientific 

fields such as agriculture; biochemistry; remote sensing; ecology and hydrology, 

including its control on nitrification rates; satellite radar interferometry and climate 

change science (Brake et al., 2013; Lawrence & Hornberger, 2007; Robinson et al., 

2016). When it comes to biophysical interactions in landscapes — those biotic and 

abiotic processes in a landscape that have an influence on the developments within 

and evolution of a landscape, including anthropogenic influences — dealing with the 

complexity of interacting processes demands collaboration between multiple 

disciplines. Wassen et al. (2013) have discussed how anthropogenic loading of 

nitrogen (N) and phosphorus (P) has changed nutrient availability in many 

ecosystems, leading to shifts in plant productivity between species, and potentially 
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impacting carbon, N, P and water cycles The interactions between these are only 

beginning to be understood. 

Another example illustrating the complexity of soil ecosystem function and services is 

the process of desertification and restoration. Desertification, defined as land 

degradation in drylands by the UNCCD, is the result of an interplay between resource 

exploitation, population increase, and environmental change. The occurrence of 

desertification in itself can be a matter of debate (Kaptué, Prihodko, & Hanan, 2015), 

but even more is re-greening (either spontaneous or by restoration efforts) in land-

atmosphere interactions and possible feedbacks with precipitation (Giannini, Biasutti, 

& Verstraete, 2008). The effect of adding water to an ecosystem on the regional 

climate has been practically applied on large scale in the form of production 

enhancement by irrigation, yet quantification of its effects are inconclusive.  Douglas 

et al. (2009) used RAMS (Regional Atmospheric Modelling System) to simulate the 

effects of irrigation in India and found that it increased the regional moisture flux, 

which in turn increased the convective available potential energy (CAPE). This led to a 

reduction in surface temperature, modified regional circulation patterns and led to 

changes in mesoscale precipitation. The magnitude and direction of the effect of 

adding water seem to depend on the extent of an area (Im & Eltahir, 2014), the 

geographic location (Barnston & Schickedanz, 1984; Chase et al., 1999; Sen, Bin, & 

Yuqing, 2004) , and the existing weather patterns (Ozdogan et al., 2010). Some  of 

these studies report an increase in precipitation downwind of an irrigated area (Eddy 

et al., 1975), while others just give the direction of the increase in their specific case 

(Moore & Rojstaczer, 2002). DeAngelis et al. (2010) concluded that the 

evapotranspiration of irrigated areas contributes to downwind precipitation with a 

larger contribution when evapotranspiration rates are higher, Chase et al. (1999) 

reported that irrigation in the Colorado Plains has an impact on the climate in the 

foothills of the Rocky Mountains and even influence the mountains themselves; cloud 

cover and precipitation being substantially affected. On the other hand, Sen et al. 

(2004) and Im and Eltahir (2014) both reported rainfall increases and decreases in the 

vicinity of the irrigated areas. This demonstrates the importance of including 

feedbacks in our models if we want to truly understand ecosystem services. 
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Notwithstanding the debate surrounding the complexity in soil processes, disciplines 

involved in environmental research unite in acknowledging spatial structure and 

heterogeneity of environmental systems (e.g. Schröder & Seppelt, 2006). Much 

research is focused on quantifying spatial structure and heterogeneity, such as climate 

variability, urban sprawl, deforestation and habitat loss (Ahlqvist & Shortridge, 2010). 

To be able to understand the emerging patterns resulting from spatial structure and 

heterogeneity, connectivity has been acknowledged as a useful theoretical concept, 

from ecology (Pringle, 2003), biology (Taylor et al., 1993), hydrology (Gomi et al., 

2008), soil science (Vogel, 2000) and  geomorphology (Baartman et al., 2013; Bracken 

& Croke, 2007). The key aspect of the connectivity concept is that it can create 

pathways for feedbacks which are so often missing in the contemporary context of soil 

processes.  

Traditionally, the centre of gravity for many studies on soil processes has been 

physically, chemically and biologically related (Vereecken et al., 2016). Studies 

considering ecosystem services are often focused on production related, or 

biodiversity indicators, while links to non-traditional areas such as construction or 

cultural heritage are somewhat limited. For example, a common framework between 

soil knowledge and urban planning is missing and generally not considered in urban 

expansions. Many of the world’s global deltas are urbanized, and further expected 

urbanization (Heilig, 2012) will result in large parts of the landscape being covered in 

concrete or asphalt. Especially in deltas, such as for example the Netherlands, soil 

sealing may increase flood risks if rain water cannot infiltrate into the soil, and sewage 

systems may not be adequate for extreme rainfall events. While flood and drought 

risks have obvious economic consequences, environmental indicators and socio-

economic indicators are often perceived as unrelated, especially in urbanized areas. It 

is assumed that by implementing nature-based solutions in the rural areas, this will 

also reduce risks in the cities. Built-up areas are all but ignored in the water and soil 

system, yet are an integral part of it. Those most affected by flood events tend to live 

in urban centres rather than the countryside, which calls for better integration of soil 

related research and urban planning.  Couplings developed between humans and 

natural systems (Liu et al., 2007), necessitate a bridge between the question-driven 
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ecology-centred spatial view and solution-driven society-centred holistic view (van der 

Ploeg, 2016; Wu, 2006). Hence the better integration of soil research with other 

disciplines, and demonstrating how soils and their connectivity underpins the delivery 

of ecosystem services is the growing challenge of soils research. 

Conclusion 

This chapter offers an assessment of the current natural capital and ecosystem service 

approaches. While these have often stood as two separate ways of looking at nature, 

efforts like the United Nations System of Environmental and Economic Accounts seek 

to unify them in an operational framework. Soils are the least developed of the natural 

resources in terms of framework development and work is needed to correct this. 

Clearly this needs to include monitoring of ‘state and change in condition’ as called for 

by the United Nations World Soil Resources Report in 2015. A monitoring framework 

in itself is a powerful tool to inform policy, and to date little progress has been made 

on how to value soils, which is the next step of the accounting approach. While we 

recognise that valuation is an integral part of the ecosystem services approach, we 

must take a step back and consider what it means to value soil, and emphasise the 

need to care for our resources. 
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APPENDIX D 

Supporting Information for Chapter 2 

Supporting methods 

Sample Collection Methods 

Within each of the 300 x 1 km sample squares, a set of soil samples were taken from 5 

pre-determined randomly dispersed locations (where this was physically possible). Soil 

was sampled after removal of vegetation and any loose litter using a black plastic core 

(5.1 cm diameter, 15 cm long) from a location centrally located within a 200m2 plot 

surveyed for vegetation. After collection, the soil cores were refrigerated and stored 

until posted, usually within 1-2 days to laboratories located at the Centre for Ecology & 

Hydrology (CEH), Bangor and Lancaster.  

Laboratory Protocols and Analytical Methods 

Soil organic matter, Loss-on-Ignition (LOI) and derived carbon concentration  

The soil was sieved to pass 2 mm and air dried. Subsequently, LOI was measured on a 

10 g sub-sample. For samples where less than 10 g was available, as close as possible 

mass of soil was used and records of the exact quantity were recorded. The sub-sample 

was oven dried at 105°C for 16 hours to remove moisture, weighed, then combusted at 

375°C for 16 hours. The cooled sample was then weighed, and the loss-on-ignition (%) 

calculated (Emmett et al., 2008, 2010). Carbon concentration is a derived unit from the 

LOI measurement and is determined by multiplying the LOI by 5.5.  

Total soil organic carbon (SOC) and nitrogen  

After treatment of the sample to remove inorganic carbon, the remaining carbon (SOC) 

was measured using a UKAS accredited (17025:2017) method SOP3102, at CEH 

Lancaster. Samples were analysed using an Elementar Vario-EL elemental analyser 

(Elementaranalysensysteme GmbH, Hanau, Germany). The Vario EL is a fully 

automated analytical instrument working on the principle of oxidative combustion 

followed by thermal conductivity detection. Following combustion in the presence of 
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excess oxygen, the oxides of nitrogen and carbon flow through a reduction column 

which removes excess oxygen. Carbon is trapped on a column whilst nitrogen is carried 

to a detector. Carbon is then released from the trap and detected separately. Sample 

weights are usually 15 mg for peat and 15-60 mg for mineral soil samples (Emmett et al., 

2010). 

Total soil phosphorous  

Air-dried and ground to 2 mm soils were digested with hydrogen peroxide (100 

Volumes) and sulphuric acid in a 5:6 ratio.  Selenium powder and lithium sulphate were 

added to raise the boiling point of the acid.   

Samples were then placed at 250°C for 15 minutes and then at 400°C where the 

temperature was maintained for 2 hours to complete the digestion. After digestion the 

samples were diluted with ultrapure water and allowed to settle overnight. The 

supernatant was then further diluted and P measured colourimetrically using a SEAL 

AQ2 discrete analyser. Phosphorus was determined using ammonium molybdenum 

blue chemistry with the addition of ascorbic acid to control the colour production. 

Olsen-phosphorous  

Two grams of air-dried soil samples are extracted in 40 ml Olsens reagent (0.5 M 

NaHCO3 at pH 8.5) for 30 minutes in a mechanical end-over-end shaker.  The sample 

was then filtered through a Whatman 44 filter paper to separate the soil and the filtrate; 

the filtrate was kept for analysis. 

The analysis was performed on a Seal Analytical AA3 segmented flow. The samples are 

mixed in the flow channel with an acidic ammonium molybdate and potassium 

antimony tartrate to form a complex with phosphate. This complex is reduced with 

ascorbic acid to develop a molybdenum blue colour.  The reaction is temperature 

controlled to 40°C using a water bath to ensure uniform colour development.  The 

developed colour is measured at 880 nm.   

Soil pH in deionized water  
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Soil pH was carried out on a suspension of fresh field-moist soil in deionised water.  The 

ratio of soil to water is 1:2.5 by weight.  The method described here is based upon that 

employed by the Soil Survey of England and Wales (Avery & Bascomb, 1974). 

Soil solution electrical conductivity  

Field moist soil (10 g) was placed in a beaker and 25 mL of deionised water (DIW) 

added. This was then stirred with a rod to produce a homogeneous suspension.  After 

30 min, the samples were stirred again with the rod and EC measured using an Pt 

electrode and a conductivity meter (Jenway 4510). 

Soil bulk density of fine earth and volumetric water content of fine earth  

Bulk density was determined from the soil core, which was 15 cm long with a radius of 

2.55 cm. Dry bulk density is calculated using the following equation: 

𝐷𝑟𝑦⁡𝑏𝑢𝑙𝑘⁡𝑑𝑒𝑛𝑠𝑖𝑡𝑦⁡(𝑔⁡𝑐𝑚−3) = ⁡
𝐷𝑟𝑦⁡𝑤𝑒𝑖𝑔ℎ𝑡⁡𝑐𝑜𝑟𝑒⁡(105°𝐶)(𝑔) − 𝑠𝑡𝑜𝑛𝑒⁡𝑤𝑒𝑖𝑔ℎ𝑡⁡(𝑔)

𝐶𝑜𝑟𝑒⁡𝑣𝑜𝑙𝑢𝑚𝑒⁡(𝑐𝑚−3) − 𝑠𝑡𝑜𝑛𝑒⁡𝑣𝑜𝑙𝑢𝑚𝑒⁡(𝑐𝑚−3)
 

Fine earth volumetric water content when sampled  

Once the bulk density has been calculated, the volumetric water content of the fine 

earth fraction was determined by multiplying the bulk density and the gravimetric water 

content of the fine earth.  

Soil water repellency, water drop penetration time  

Soil water repellency (surface) measurement is carried out by measuring the time for a 

fixed volume droplet of deionised water (100 µL) to be fully absorbed into the soil 

surface (Water Drop Penetration Time (WDPT)). Six drops of water were applied to an 

air-dried undisturbed soil surface. The entire process was filmed using a digital video 

camera so that the timing could be determined accurately. The samples were 

maintained in a laboratory at a relatively constant temperature ~20oC. Some soils, 

especially arable, were not consolidated so measurements were taken on surface 

unconsolidated soil or aggregates using 20 g soil added to a tin lid, and procedure 

followed as described above.      

Soil texture 
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Soil texture was measured by subsampling the air-dried sample by manual quartering, 

removing 0.5 g and treating with H2O2 to remove the organic C (Gee & Or, 2002). The 

samples were transferred to 250 ml bottles, 5 ml of 5% sodium hexametaphosphate 

added and the samples shaken overnight at 240 rev min-1 to disperse the samples. The 

particle size distribution was measured using a laser diffraction LS320 particle size 

analyser (Beckman-Coulter Inc, Pasadena, CA). The outflow from the machine was also 

passed through a 63 μm sieve and the collected sand-sized particles weighed for quality 

control of the sand content measured by the laser. The particle size distributions were 

calculated using the Mie theory approach, with an RI of 1.55 and an AC of 0.1 

(Bieganowski et al., 2018; Özer, Orhan, & Işik, 2010). Particles within the range 0.04 to 

2.2 μm were categorised as clay, 2.2 to 63 μm as silt and 63 to 2000 μm as sand. 
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Supporting tables 

Table 1: Number of Welsh sites in the Countryside Survey outside the Environment Agency prompt values. For 

Olsen P this is 10mg/l for mesotrophic grassland, no results presented for acid grassland and heathland. 

For pH this is <5 and >7 for mesotrophic grassland, >5 for acid grassland and heathland. For bulk density 

this is above 1.3 for mesotrophic grassland and 1.0 for acid grassland and heath. 

 Olsen P pH Bulk density 

Habitat  1998 2007 1978 1998 2007 2007 

Mesotrophic grassland 36 (88%) 34 (60%) 33 (55%) 8 (14%) 30 (10%) 15 (6%) 

Acid grassland - - 0 (0%) 1 (14%) 12 (24%) 1 (2%) 

Dwarf shrub heath - - 0 (0%) 1 (25%) 1 (4%) 0 (0%) 

 

 

Table 2: Spearman rank correlations between pH, carbon (total C), nitrogen, bulk density, water (volumetric 

water content), soil water repellency, total phosphorus, electrical conductivity and rock volume of the 

soil. Cells are coloured according to the strength and direction of the correlation, blue being positive and 

red being negative. 

 
pH Carbon Nitrogen 

Bulk 
density Water 

Repellen
cy Total P EC Rock 

pH 
1 -0.609 -0.537 0.641 -0.252 -0.437 0.019 -0.154 0.21 

Carbon 
-0.609 1 0.952 -0.913 0.499 0.495 0.247 0.222 -0.33 

Nitrogen 
-0.537 0.952 1 -0.881 0.495 0.481 0.391 0.217 -0.314 

Bulk 
density 

0.641 -0.913 -0.881 1 -0.474 -0.481 -0.195 -0.242 0.269 

Water 
-0.252 0.499 0.495 -0.474 1 0.109 0.1 -0.054 -0.416 

Repellency 
-0.437 0.495 0.481 -0.481 0.109 1 0.076 0.072 -0.202 

Total P 
0.019 0.247 0.391 -0.195 0.1 0.076 1 0.102 0.08 

EC 
-0.154 0.222 0.217 -0.242 -0.054 0.072 0.102 1 -0.083 

Rock 
0.21 -0.33 -0.314 0.269 -0.416 -0.202 0.08 -0.083 1 
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Table 3: The mean and standard deviations of the different soil properties per cluster. All properties are 

significantly different between the clusters at p < 0.0001. 

Cluster pH Bulk density 

(g cm-3) 

Total carbon 

(g/100g dry 

soil) 

Total nitrogen 

(g/100g dry 

soil) 

Water 

content (%) 

Water 

repellency 

(log(s)) 

1 4.45 (±0.64) 0.140 

(±0.089) 

40.4 (±10.8) 1.920 

(±0.499) 

57.1 (±15.4) 6.53 (±1.84) 

2 4.72 (±0.52) 0.487 

(±0.167) 

10.3 (±5.15) 0.693 

(±0.299) 

35.6 (±16.3) 6.38 (±2.42) 

3 5.67 (±0.51) 0.842 

(±0.162) 

4.96 (±2.15) 0.434 

(±0.129) 

26.4 (±8.5) 5.52 (±1.53) 

4 5.87 (±0.64) 0.852 

(±0.228) 

5.08 (±2.30) 0.441 

(±0.166) 

41.0 (±11.7) 3.17 (±1.64) 
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Supporting figures 

 

Figure 1: Differences in soil total nitrogen (a), soil total phosphorus (b) and soil Olsen P (c) across the range of 

habitats found in our study across Wales. Layout and colours as in Figure 2.2. Olsen P is not presented 

for upland or wooded sites due to its unreliability in low pH soils. 
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Figure 2: Differences in soil bulk density (a), soil rock volume (b) and soil electrical conductivity (c) across the 

range of habitats found in our study across Wales. Layout and colours as in Figure 2.2. 
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Figure 3: Parameters used within the classification process are plotted against each other. Points are coloured 

by the group identity: yellow is group 1 (organic); green is group 2 (organo-mineral); red is group 3 (acid 

mineral); and blue is group 4 (neutral mineral). These names are approximations of their positions on 

these graphs. The inner ellipse on each graph contains 50% of the points of the corresponding colour 

and the outer ellipse contains 90% of the points. 
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Figure 4: The count of sites per major soil group, coloured by the topsoil property cluster as found within our 

analysis.  
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APPENDIX E 

Supporting information for Chapter 3 

 

Figure 1. Impact of habitat on multifractal parameters. Overall, the violin plots show no significant change in 

multifractal parameters with habitat. Impr Grass = Improved Grassland; Neutr Grass = Neutral 

Grassland; Acid Grass = Acid Grassland; Broadleaved = Broadleaved, Mixed and Yew Woodland; Conifer 

= Coniferous Woodland; Heath = Dwarf Shrub Heath, Fen, Marsh, Swamp or Bracken. 
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Figure 2. Impact of habitat on multifractal spectra. While there is considerable variation in the shape of the Dq 

spectra across samples, there appears to be no pattern with habitat. 
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Figure 3. Impact of Multifractal parameter ratios on microbial richness. No change in bacterial or fungal 

richness was observed with changing ratios of multifractal parameters. The Spearman’s rank 

correlations between fungal richness and D1/D0 and D2/D1 were -0.009 and 0.052 respectively. For 

bacteria they were 0.051 and 0.138. 
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Table 1. Summary statistics for the soil and climate data used in the structural equation model 

Variable Mean Median Min Max 

Carbon 6.96 5.11 1 48.2 

pH 4.58 4.56 2.42 7.35 

Fungal richness 193.7 198 56 237 

Bacterial richness 4245 4402 1591 6710 

Elevation 190 157 3 653 

Precipitation 1278 1144 671 3627 

D0 0.989 0.997 0.907 1 

D1 0.915 0.920 0.693 0.970 

D2 0.879 0.892 0.450 0.965 

D1/D0 0.925 0.930 0.693 0.970 

D2/D1 0.960 0.971 0.649 0.997 
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Table 2. Summary of the structural equation model output 

Regressions: 
 

Estimate Std.Err z-value P (>|z|) Std.all Std.se 

Carbon~ 

Precipitation  0.333 0.126  2.644 0.008  0.250 0.092 

Elevation  0.091 0.029  3.134 0.002  0.220 0.070 

Texture  2.747 1.084  2.535 0.011  0.148 0.055 

Habitat_Intensity -0.223 0.091 -2.441 0.015 -0.169 0.071 

pH~ 

Carbon -0.128 0.099 -1.286 0.198 -0.087 0.070 

Elevation -0.166 0.054 -3.063 0.002 -0.274 0.083 

Texture -2.205 1.452 -1.519 0.129 -0.081 0.053 

Habitat_Intensity  0.789 0.147  5.363 0.000  0.412 0.079 

Bacteria ~ 

Carbon -0.135 0.069 -1.966 0.049 -0.11 0.056 

pH  0.337 0.058  5.783 0.000  0.402 0.055 

Texture  2.832 1.315  2.154 0.031  0.124 0.056 

Habitat_Intensity  0.565 0.114  4.938 0.000  0.351 0.071 

Fungi ~ 

Bacteria  0.349 0.063  5.580 0.000  0.441 0.077 

Texture -1.273 0.785 -1.621 0.105 -0.071 0.044 

Habitat_Intensity  0.152 0.091  1.680 0.093  0.120 0.072 
      

 

Intercepts:  
Estimate Std.Err z-value P(>|z|) Std.all Std.se 

.Carbon -1.223 1.009 -1.212 0.226 -2.058 1.647 

.pH  6.563 1.372  4.784 0.000  7.569 1.598 

.Bacteria -0.057 1.285 -0.045 0.964 -0.079 1.765 

.Fungi  1.510 0.762  1.982 0.047  2.623 1.348 
      

 

Variances:  
Estimate Std.Err z-value P(>|z|) Std.all Std.se 

.Carbon 0.243 0.033 7.317 0.000 0.687 0.062 

.pH 0.431 0.07 6.082 0.000 0.574 0.058 

.Bacteria 0.253 0.03 8.446 0.000 0.478 0.048 

.Fungi 0.239 0.022 10.89 0.000 0.721 0.048 

Table columns correspond to: Estimate, the estimated value of the path coefficients, intercepts and variances; 

Std.Err, the standard error of the aforementioned value; z-value, the test statistic; P  (>|z|), the p-value; 

Std.all, the standardised value (standardised by the z-score method); and Std.se the standard error of 

the standardised value.  
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Figure 4. Indirect and direct effects upon bacterial and fungal richness derived from the structural equation 

model. 
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Figure 5 The results of fitting environmental vectors onto the fungal NMDS using 9 particle size classes, pH and 

carbon. Variables are labelled as pH, CARB is carbon, FC is fine clay (0.04 – 0.13 µm), MC is medium clay 

(0.13 – 0.45 µm), CC is coarse clay (0.45 – 1.5 µm), FSi is fine silt (1.5 – 5.1 µm), MSi is medium silt (5.1 - 

17 µm), CSi is coarse silt (17 - 58 µm), FSa is fine sand (58 - 194 µm), MSa is medium sand (194 - 653 µm) 

and CSa is coarse sand (653-2000 µm). The particle size boundaries here do not correspond to 

classification systems used elsewhere as they are based upon grouping together nine laser granulometry 

bins for each new grouping. 
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Table 3. Envfit results for fungal NMDS 

Variable NMDS1 NMDS2 R2 Pr(>r) 

PH -0.921 -0.389 0.623 0.001 

CTOT 0.882 0.472 0.311 0.001 

CC -0.953 0.302 0.174 0.001 

MC -0.982 0.187 0.159 0.001 

FSi -0.587 0.809 0.118 0.001 

MSi -0.247 0.969 0.117 0.001 

MSa 0.596 -0.803 0.108 0.001 

CSa 0.527 -0.850 0.097 0.001 

FC -0.917 0.400 0.032 0.006 

FSa 0.921 -0.390 0.031 0.007 

qD0 0.483 -0.876 0.019 0.049 

CSi -0.272 0.962 0.018 0.056 

qD2 0.123 0.992 0.011 0.159 

qD1 0.900 0.437 0.009 0.248 
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Fig. 6. The results of fitting environmental vectors onto the bacterial NMDS using 9 particle size classes, pH and 

carbon. Panel a shows the first and second axis of the ordination, panel b shows the first and third of the 

ordination. Variables are labelled as in Fig. S5. 
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Table 4. Envfit results for the bacterial ordination, with variables ordered by decreasing R2 value.  

Variable NMDS1 NMDS2 NMDS3 R2 Pr(>r) 

pH -0.931 -0.244 -0.271 0.709 0.001 

CARB 0.381 -0.121 -0.916 0.402 0.001 

CC -0.318 0.395 0.862 0.239 0.001 

MC -0.330 0.357 0.874 0.222 0.001 

FSi -0.178 0.699 0.692 0.171 0.001 

MSa 0.166 -0.709 -0.685 0.167 0.001 

MSi -0.058 0.929 0.365 0.157 0.001 

CSa 0.256 -0.966 -0.045 0.113 0.001 

FSa 0.145 -0.245 -0.958 0.088 0.001 

FC -0.463 0.815 0.350 0.042 0.006 

CSi -0.104 0.886 -0.451 0.027 0.034 

qD0 0.211 -0.768 -0.604 0.026 0.035 

qD1 0.533 -0.165 -0.830 0.009 0.424 

qD2 0.103 0.823 -0.559 0.008 0.448 
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Figure 7. Relative compositions of common microbial taxa across whole dataset and those that are correlated 

with particle size bins. Panel a is the fungal classes and panel b is the bacterial phyla. The top panel for 

each is the composition in the common taxa (defined as appearing in >50% of sites for bacteria and 

>25% of sites for fungi) that are present in the entire dataset, and the bottom panel is the composition 

in the common taxa that are significantly correlated to any particle size bin. 

 

  

a b 
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APPENDIX F 

Supporting information for Chapter 4 

 

Supplementary methods: Structural Equation Modelling (SEM) 

SEM and its role in estimating causal mechanisms 

Identifying the mechanisms responsible for ecosystem change is a research imperative 

but a major analytical challenge. Experimental manipulations provide strong evidence 

of causation. However careful design is needed to ensure homogeneity of starting 

conditions across controls and treatments, which often means that manipulated areas 

are relatively small. This often means that only a limited number of treatment effects 

and levels can be replicated and randomised over a constrained area and time horizon 

relative to the realistic spatial and temporal scales at which phenomena play out 

across landscapes and ecosystems. Hence, the inferential strength of experimental 

results trade-off against their scale-dependent ecological relevance. An alternative is to 

tackle the challenge of estimating causal mechanisms head on by analysis of large-

scale observations either with or without a temporal component. Typical approaches 

have relied on forms of multiple regression. These however, ignore and can indeed 

conceal the contribution of mediating variables in propagating effects along a 

mechanistic pathway. This is because in multiple regression, all the explanatory 

variables compete for fractions of the same variance in the response variable. For 

example, if precipitation results in conditions that favour particular plant traits and 

water repellency changes in response to incorporation of material from these plants 

into the soil then a more accurate analysis of the mechanisms involved in driving soil 

water repellency would include the mediating effect of plant species traits in 

conveying the climatic conditioning effect of rainfall. In a multiple regression, strong 

positive correlation between rainfall and plant traits would lead to one or at worst 

neither variable being considered ‘significant’. An advantage of SEM is that it explicitly 

allows the user to estimate parameters for the sequential effects of one variable on 

another and then on another. In this respect SEM allows for more realistic 
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representations of possible causal pathways. Clearly, if considering mediating 

relationships where A drives C drives D, there is a much larger set of possible paired 

relationships between any two of a total set of variables than in a multiple regression. 

Partly for this reason but mainly because we have prior knowledge, our initial SEM is 

set up to test only those relationships that are consistent with our causal model. After 

fitting the model, diagnostic testing alerts us to additional possible relationships that 

we might consider including in the model. Because this test detects correlated 

residuals it can also highlight the possibility of missing variables and therefore 

components of the mechanistic pathway that we have not measured. For example, 

having fitted some mediating predictor (A) to a response (B) we find that the residuals 

from the fitted predictor correlate with the residuals from the fitted response. In this 

case a more complete, and accurate, representation of the causal mechanism would 

need to consider another variable or variables conveying a causal influence on both A 

and B. This message from the model would also be likely to arise if we tried using the 

model for predicting some new cases because a wrong prediction would be likely to 

occur where the missing variable exerted an effect. It is also worth noting that an 

experimental set up would be very unlikely to have included replicated, randomised 

and orthogonal main effects and interactions for the large number of variables that 

can be included in a realistic SEM, thus reducing the understanding gained about 

causal mechanisms. Moreover, unless experiments were also replicated along 

gradients that accidentally coincided with the missing variable above, we would gain 

no insight into its operation or even existence and so our experimental result would 

lack realism and transferability despite the strong inference we could draw about the 

effects tested in the experiment. Therefore, in terms of causation we would argue that 

experimentation is not a clear analytical winner nor a gold standard to aim at if a full 

and realistic understanding of mechanisms is to be achieved. Both SEM and 

experimentation work together to build causal understanding. The advantage of the 

SEM approach is precisely that it encourages us to think about mechanisms and to test 

these claims against new cases by modelling them. This goes beyond extracting 

associations (Grace, 2006, 2008).            
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Statistical method 

Piecewise SEM involves fitting multiple regression models together to form one large 

overall model. The overall model is evaluated according to whether it is missing 

informative paths, which can then be used to compare models. This comparison based 

on missing paths is known as Shipley’s d-separation test (Shipley, 2000, 2009). 

Shipley’s d-separation test was performed by adding each missing path into the model 

and examining the posterior distribution of the parameter estimate for the missing 

path. If the posterior distribution of the path substantially crosses zero then the path 

is considered less important and is likely to be dropped from the model. To 

systematically establish which paths would be dropped from the model for each path 

the credible interval that crossed zero was used to create a p-value (Clough, 2012). The 

p-values from all the missing paths within the overall model were combined using 

Fisher’s C, and then this statistic used to construct an AICc score for each overall 

model (Shipley, 2013). The best overall model was selected as the one with the lowest 

AICc score.  

The parameter estimates were used to evaluate the relative impact of the predictors on 

the response variable. The direct impact is given by the parameter estimate in the 

tables below, and the indirect impact found by adding all the indirect paths within the 

causal model from the predictor to response together. The total impact is calculated 

by adding together the direct and indirect impact. 

Proposed causative model 

The causal model used within the SEM analysis was established before beginning the 

analysis, based on expert knowledge and the literature. SEM requires that all causal 

links be unidirectional and there be no feedback loops. Where there was a potential 

influence in both directions the link that acts on the shortest timescale was chosen. 

For example, carbon causes water content by influencing the water holding capacity 

but water also causes carbon content by changing biomass production. As biomass 

production takes longer to occur than water holding capacity the directionality of the 

link was chosen from carbon to water content.  

For climatic variables precipitation and drought were chosen to represent the rainfall 

overall and also the level of variability in rainfall as both drought and water inputs in 
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general are known to be important in establishing soil water repellency (Goebel et al., 

2011). Elevation was included as a predictor due to the strong altitudinal gradient in 

soils across Wales, in particular to check if the changes in temperature regime (both 

changes in the average and range with altitude) may be affecting repellency. 

Soil carbon, water content and pH have all been previously shown to strongly 

influence soil water repellency so were included in the model (Amer et al., 2017; Diehl, 

2013; Doerr et al., 2000; Lebron et al., 2012; Mainwaring et al., 2013; Mirbabaei et al., 

2013; Zheng et al., 2016). Bulk density was considered as another possible predictor of 

repellency and was tested to see if it explained any further variation in soil water 

repellency once the other predictors were accounted for. 

Previous work in the literature had suggested that plant drought stress tolerance may 

be positively related to repellency, and plant productivity inversely (Müller et al., 2014; 

Robinson et al., 2010; Verboom & Pate, 2006). We had sufficient data to include either 

the Ellenberg fertility score as a proxy for productivity, or the Grime stress tolerance 

score as a proxy for stress tolerance. We posited that soil microbial communities 

would also be important to soil water repellency, based on literature evidence that 

microbial communities both create and destroy repellent organic material 

(Achtenhagen et al., 2015; Chau et al., 2012; Li et al., 2018; Schaumann et al., 2007). 

The bacterial community composition was represented by the NMDS axis score. 

Ordination scores are difficult to compare across studies so we chose to represent the 

fungal community by the proportion of fungi that fall into different trophic modes as 

identified by FUNGuild (Nguyen et al., 2016). Fungal community composition was 

assumed to be responding to changes in bacterial community composition rather than 

vice versa due to the differences in their life history strategies. Microbial community 

composition were modelled as responding to all other variables (other than 

repellency), as their relatively quick lifespans and adaptability to environmental 

change should mean that a change in the environment causes a change in microbial 

community composition before a change in microbial communities change the 

environment. All these biological variables were tested to see if they explained any 

more variation once changes in climate and soil physicochemical properties were 
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accounted for, and a p value of less than 0.05 for the link between the variable and 

repellency taken as indicative that they were important to repellency.  

Model fitting 

Of the two SEMs, 1326 plots had sufficient data to be included in the SEM without 

microbial data and 425 had sufficient data to be included in the microbial SEM. Over 

the 300 squares from the full survey many did not have five plots surveyed due to 

access restrictions, and other plots that were surveyed had ground too rocky for soil 

sampling or insufficient plant data to construct the Grime stress tolerance score. For 

the SEM without microbial data only the plant community from the central 2 m-by-2 

m of the plot was used to construct community indices due to changes in the 

vegetation survey procedure in the latter two years of the survey. Soil carbon and 

water repellency were log-transformed before analysis. All data were standardised so 

that 0 was the minimum value and 1 was the average of the top 2% of values. Square 

identity was used as a random effect, year of sample collection was found to have an 

nonsignificant impact on model fit when included as a random effect so was excluded 

from analysis. Bulk density, Grime Stress and Ellenberg Fertility were all initially 

excluded from the model, then tested to see if they had a clear impact on the residuals 

of the fully specified model for the four years. The residuals of water content, pH and 

water repellency were all tested to see if they were impacted by bulk density. Only the 

residuals of water repellency were tested against Grime Stress and Ellenberg Fertility. 

Of these tests only residuals(repellency) ~ Grime Stress was significant (p = 0.0124), 

hence Grime Stress was included in the final model while bulk density and Ellenberg 

Fertility were not. Microbial community composition was represented by proportion 

of symbiotrophic fungi and bacteria NMDS scores from axis 1.  
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Figure 1: Plot layout  

 

  



 

362 

 

Table 1: Repellency of different habitats. The number of samples in each repellency (WDPT) rating, by broad 

habitat.  

WDPT rating A
ci

d
 G

ra
ss

la
n

d
 

A
ra

b
le

  

B
o

g 

B
ra

ck
en

 

B
ro

ad
le

av
ed

 

W
o

o
d

la
n

d
 

C
o

n
if

er
o

u
s 

W
o

o
d

la
n

d
 

D
w

ar
f 

Sh
ru

b
 

H
ea

th
 

Fe
n

, M
ar

sh
, 

Sw
am

p
 

Im
p

ro
ve

d
 

G
ra

ss
la

n
d

 

N
eu

tr
al

 G
ra

ss
la

n
d

 

O
th

er
 

To
ta

l 

None 
(0-5s) 

3 30 2 2 13 2 1 7 29 20 4 
113 

(8.2%) 

Slight 
(6-60s) 

15 6 4 4 26 13 8 12 146 84 15 
333 

(24.1%) 

Moderate 
(61-600s) 

51 1 34 20 28 28 44 14 135 124 20 
499 

(36.1%) 

Severe 
(601-3600s) 

74 0 28 11 15 14 25 15 41 61 11 
295 

(21.3%) 

Extreme 
(>3600s) 

44 0 22 10 7 14 10 12 5 11 8 
143 

(10.3%) 

Total 187 37 90 47 89 71 88 60 356 300 56 1383 
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Table 2: Bayesian SEM coefficients full dataset 

Response Marg. R-
sq 

Cond. 
R-sq 

Predictor Estimate Est. Error lower 95% 
C.I. 

upper 95% 
C.I. 

Eff. Sample Rhat p-value 
from C.I. 

Repellency 0.29 
(±0.02) 

0.42 
(±0.02) 

Intercept 0.412 0.044 0.326 0.499 14070 1.000 <0.0001 

Repellency Plant stress 
tolerance 

0.261 0.038 0.188 0.336 16833 1.000 <0.0001 

Repellency pH -0.145 0.039 -0.220 -0.068 16883 1.000 <0.0001 

Repellency Water -0.165 0.034 -0.231 -0.099 20000 1.000 <0.0001 

Repellency Carbon 0.348 0.039 0.272 0.424 17761 1.000 <0.0001 

Repellency Precipitation -0.153 0.057 -0.264 -0.041 11324 1.001 0.0081 

Repellency Drought -0.088 0.047 -0.181 0.003 10197 1.001 0.0588 

Plant stress tolerance 0.64 
(±0.01) 

0.74 
(±0.01) 

Intercept 0.276 0.033 0.212 0.339 9193 1.001 <0.0001 

Plant stress tolerance pH -0.317 0.027 -0.369 -0.265 14201 1.000 <0.0001 

Plant stress tolerance Carbon 0.210 0.026 0.159 0.260 14616 1.000 <0.0001 

Plant stress tolerance Precipitation 0.354 0.046 0.263 0.444 7002 1.001 <0.0001 

Plant stress tolerance Elevation 0.239 0.030 0.179 0.298 8479 1.000 <0.0001 

Plant stress tolerance Drought 0.121 0.037 0.047 0.194 7106 1.001 0.0011 

pH 0.44 
(±0.01) 

0.65 
(±0.01) 

Intercept 0.552 0.024 0.504 0.599 10564 1.000 <0.0001 

pH Water 0.168 0.024 0.120 0.215 20000 1.000 <0.0001 

pH Carbon -0.269 0.028 -0.323 -0.215 16713 1.000 <0.0001 

pH Elevation -0.306 0.028 -0.361 -0.250 9524 1.001 <0.0001 

pH Drought 0.168 0.032 0.105 0.231 8670 1.000 <0.0001 
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Water 0.32 
(±0.02) 

0.57 
(±0.01) 

Intercept 0.263 0.034 0.197 0.330 6746 1.001 <0.0001 

Water Carbon 0.410 0.027 0.356 0.463 13126 1.001 <0.0001 

Water Precipitation 0.078 0.051 -0.022 0.179 6140 1.001 0.1256 

Water Drought -0.094 0.046 -0.185 -0.005 6164 1.001 0.0381 

Carbon 0.46 
(±0.02) 

0.66 
(±0.01) 

Intercept 0.457 0.030 0.397 0.517 5850 1.001 <0.0001 

Carbon Precipitation 0.155 0.056 0.044 0.262 5796 1.002 0.0056 

Carbon Elevation 0.379 0.033 0.316 0.445 6782 1.001 <0.0001 

Carbon Drought -0.204 0.045 -0.292 -0.117 5679 1.001 <0.0001 
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Table 3: Bayesian SEM coefficients microbial data 

Response Marg. R-sq Cond. R-sq Predictor Estimate Est. Error lower 95% 
C.I. 

upper 95% 
C.I. 

Eff. Sample Rhat p-value 
from C.I. 

Repellency 0.38 
(±0.03) 

0.52 
(±0.03) 

Intercept 0.314 0.034 0.249 0.382 20000 1.000 <0.0001 

Repellency Plant stress 
tolerance 

0.187 0.067 0.056 0.322 20000 1.000 0.0045 

Repellency Water -0.322 0.061 -0.441 -0.202 20000 1.000 <0.0001 

Repellency Carbon 0.316 0.069 0.178 0.452 20000 1.000 <0.0001 

Repellency Symbiotroph -0.203 0.058 -0.315 -0.088 20000 1.000 0.0004 

Repellency Bacteria 0.295 0.067 0.161 0.427 17587 1.000 <0.0001 

Symbiotroph 0.34 
(±0.05) 

0.34 
(±0.05) 

Intercept 0.167 0.027 0.114 0.220 20000 1.000 <0.0001 

Symbiotroph Water -0.187 0.047 -0.278 -0.097 20000 1.000 0.0002 

Symbiotroph Plant stress 
tolerance 

-0.116 0.054 -0.223 -0.011 18126 1.000 0.0320 

Symbiotroph Bacteria 0.346 0.049 0.251 0.443 18720 1.000 <0.0001 

Bacteria 0.86 
(±0.01) 

0.89 
(±0.01) 

Intercept 0.504 0.029 0.447 0.560 20000 1.000 <0.0001 

Bacteria Plant stress 
tolerance 

0.252 0.035 0.181 0.320 20000 1.000 <0.0001 

Bacteria pH -0.675 0.033 -0.740 -0.610 20000 1.000 <0.0001 

Bacteria Carbon 0.235 0.031 0.174 0.295 20000 1.000 <0.0001 

Bacteria Elevation 0.072 0.031 0.011 0.133 20000 1.000 0.0216 

Plant stress 
tolerance 

0.67 
(±0.02) 

0.78 
(±0.01) 

Intercept 0.238 0.050 0.139 0.336 9892 1.000 <0.0001 

Plant stress 
tolerance 

pH -0.253 0.044 -0.339 -0.167 14193 1.000 <0.0001 
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Plant stress 
tolerance 

Carbon 0.244 0.042 0.160 0.325 13502 1.000 <0.0001 

Plant stress 
tolerance 

Precipitation 0.344 0.066 0.216 0.476 7457 1.000 <0.0001 

Plant stress 
tolerance 

Elevation 0.239 0.047 0.147 0.330 8916 1.000 <0.0001 

Plant stress 
tolerance 

Drought 0.137 0.056 0.025 0.246 7808 1.000 0.0156 

pH 0.48 
(±0.03) 

0.69 
(±0.02) 

Intercept 0.556 0.042 0.474 0.638 11435 1.000 <0.0001 

pH Water 0.127 0.048 0.036 0.221 18127 1.000 0.0070 

pH Carbon -0.264 0.048 -0.357 -0.172 17225 1.000 <0.0001 

pH Elevation -0.324 0.046 -0.415 -0.234 9913 1.001 <0.0001 

pH Drought 0.164 0.052 0.062 0.268 10497 1.000 0.0014 

Water 0.32 
(±0.04) 

0.60 
(±0.03) 

Intercept 0.287 0.023 0.243 0.331 20000 1.000 <0.0001 

Water Carbon 0.384 0.043 0.299 0.469 20000 1.000 <0.0001 

Water Precipitation 0.117 0.052 0.015 0.221 17594 1.000 0.0265 

Carbon 0.50 
(±0.03) 

0.68 
(±0.02) 

Intercept 0.418 0.046 0.328 0.509 9261 1.000 <0.0001 

Carbon Precipitation 0.191 0.079 0.033 0.347 9040 1.000 0.0169 

Carbon Elevation 0.364 0.052 0.262 0.467 9979 1.000 <0.0001 

Carbon Drought -0.210 0.067 -0.341 -0.080 9319 1.000 0.0018 
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Table 4: Impact of habitat on SWR residuals for full dataset (Tukey HSD) 

Habitat comparison diff lower upper p adj 

Arable and horticultural-Acid Grassland -1.766 -2.727 -0.805 0.000 

Bog-Acid Grassland 0.089 -0.557 0.736 1.000 

Bracken-Acid Grassland 0.188 -0.686 1.063 1.000 

Broadleaved, mixed and yew woodland-Acid Grassland -0.542 -1.217 0.132 0.244 

Coniferous Woodland-Acid Grassland -0.306 -1.031 0.420 0.945 

Dwarf Shrub Heath-Acid Grassland -0.850 -1.505 -0.196 0.002 

Fen, Marsh and Swamp-Acid Grassland -0.184 -0.995 0.628 0.999 

Improved Grassland-Acid Grassland -0.070 -0.514 0.374 1.000 

Neutral Grassland-Acid Grassland 0.059 -0.403 0.522 1.000 

Bog-Arable and horticultural 1.855 0.814 2.896 0.000 

Bracken-Arable and horticultural 1.955 0.759 3.150 0.000 

Broadleaved, mixed and yew woodland-Arable and horticultural 1.224 0.165 2.282 0.010 

Coniferous Woodland-Arable and horticultural 1.460 0.369 2.552 0.001 

Dwarf Shrub Heath-Arable and horticultural 0.916 -0.130 1.962 0.146 

Fen, Marsh and Swamp-Arable and horticultural 1.583 0.432 2.733 0.001 

Improved Grassland-Arable and horticultural 1.697 0.768 2.625 0.000 

Neutral Grassland-Arable and horticultural 1.826 0.888 2.763 0.000 

Bracken-Bog 0.099 -0.862 1.061 1.000 

Broadleaved, mixed and yew woodland-Bog -0.631 -1.415 0.153 0.242 

Coniferous Woodland-Bog -0.395 -1.223 0.434 0.888 

Dwarf Shrub Heath-Bog -0.939 -1.706 -0.172 0.004 

Fen, Marsh and Swamp-Bog -0.273 -1.177 0.632 0.995 

Improved Grassland-Bog -0.159 -0.756 0.439 0.998 

Neutral Grassland-Bog -0.030 -0.641 0.582 1.000 

Broadleaved, mixed and yew woodland-Bracken -0.731 -1.711 0.250 0.350 

Coniferous Woodland-Bracken -0.494 -1.510 0.522 0.875 

Dwarf Shrub Heath-Bracken -1.039 -2.005 -0.072 0.024 

Fen, Marsh and Swamp-Bracken -0.372 -1.451 0.707 0.985 

Improved Grassland-Bracken -0.258 -1.097 0.581 0.994 

Neutral Grassland-Bracken -0.129 -0.978 0.720 1.000 

Coniferous Woodland-Broadleaved, mixed and yew woodland 0.237 -0.614 1.087 0.997 

Dwarf Shrub Heath-Broadleaved, mixed and yew woodland -0.308 -1.098 0.483 0.967 

Fen, Marsh and Swamp-Broadleaved, mixed and yew woodland 0.359 -0.566 1.284 0.968 

Improved Grassland-Broadleaved, mixed and yew woodland 0.473 -0.155 1.100 0.335 

Neutral Grassland-Broadleaved, mixed and yew woodland 0.602 -0.039 1.243 0.087 

Dwarf Shrub Heath-Coniferous Woodland -0.544 -1.379 0.290 0.551 
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Table 5: Impact of habitat on SWR residuals for microbial subset (Tukey HSD) 

Habitat comparison diff lower upper p adj 

Arable and horticultural-Acid Grassland -1.436 -2.850 -0.023 0.043 

Bog-Acid Grassland -0.574 -1.749 0.602 0.845 

Broadleaved, mixed and yew woodland-Acid Grassland -0.218 -1.357 0.920 1.000 

Coniferous Woodland-Acid Grassland 0.090 -1.038 1.217 1.000 

Dwarf Shrub Heath-Acid Grassland -0.077 -1.728 1.573 1.000 

Fen, Marsh and Swamp-Acid Grassland -0.155 -1.604 1.295 1.000 

Improved Grassland-Acid Grassland 0.079 -0.763 0.922 1.000 

Neutral Grassland-Acid Grassland 0.162 -0.720 1.045 1.000 

Bog-Arable and horticultural 0.863 -0.651 2.376 0.696 

Broadleaved, mixed and yew woodland-Arable and horticultural 1.218 -0.267 2.702 0.207 

Coniferous Woodland-Arable and horticultural 1.526 0.050 3.002 0.037 

Dwarf Shrub Heath-Arable and horticultural 1.359 -0.547 3.265 0.392 

Fen, Marsh and Swamp-Arable and horticultural 1.282 -0.453 3.016 0.341 

Improved Grassland-Arable and horticultural 1.516 0.244 2.788 0.007 

Neutral Grassland-Arable and horticultural 1.599 0.300 2.898 0.005 

Broadleaved, mixed and yew woodland-Bog 0.355 -0.905 1.616 0.994 

Coniferous Woodland-Bog 0.663 -0.587 1.914 0.774 

Dwarf Shrub Heath-Bog 0.496 -1.241 2.233 0.993 

Fen, Marsh and Swamp-Bog 0.419 -1.128 1.966 0.995 

Improved Grassland-Bog 0.653 -0.349 1.654 0.521 

Neutral Grassland-Bog 0.736 -0.299 1.772 0.396 

Coniferous Woodland-Broadleaved, mixed and yew woodland 0.308 -0.907 1.524 0.997 

Dwarf Shrub Heath-Broadleaved, mixed and yew woodland 0.141 -1.571 1.853 1.000 

Fen, Marsh and Swamp-Broadleaved, mixed and yew woodland 0.064 -1.455 1.583 1.000 

Improved Grassland-Broadleaved, mixed and yew woodland 0.298 -0.659 1.255 0.988 

Neutral Grassland-Broadleaved, mixed and yew woodland 0.381 -0.612 1.374 0.957 

Dwarf Shrub Heath-Coniferous Woodland -0.167 -1.871 1.537 1.000 

Fen, Marsh and Swamp-Coniferous Woodland -0.244 -1.755 1.267 1.000 

Improved Grassland-Coniferous Woodland -0.010 -0.954 0.934 1.000 

Neutral Grassland-Coniferous Woodland 0.073 -0.907 1.053 1.000 

Fen, Marsh and Swamp-Dwarf Shrub Heath -0.077 -2.010 1.855 1.000 

Improved Grassland-Dwarf Shrub Heath 0.157 -1.374 1.688 1.000 

Neutral Grassland-Dwarf Shrub Heath 0.240 -1.314 1.793 1.000 

Improved Grassland-Fen, Marsh and Swamp 0.234 -1.078 1.546 1.000 

Neutral Grassland-Fen, Marsh and Swamp 0.317 -1.021 1.655 0.998 

Neutral Grassland-Improved Grassland 0.083 -0.549 0.715 1.000 
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APPENDIX G 

Supplementary information for Chapter 5 

 

Figure 1: A pairs panel plot of the taxonomic group richness for plants, birds, butterflies, bee groups, hoverfly 

groups, fungi (ITS), fungi (18S), bacteria and heterotrophs. The diagonal contains the names of the 

variables, their histogram and density plot. The upper triangle shows the Spearman rank correlation 

proportional to their size and the lower triangle the variables plotted against each other with loess fit 

line. Microbial richness values are mean for the sampling square. In total, there are 298 sampling 

squares with aboveground information including 148 with soil microbial information. Plotted using the 

psych package in R. 
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Figure 2: A pairs panel plot of the taxonomic group richness for all vascular plants, forb plants, graminoid 

plants, woody plants, bacteria, fungi (ITS), heterotrophic protists and AM fungi. The diagonal contains 

the names of the variables, their histogram and density plot. The upper triangle shows the Spearman 

rank correlation proportional to their size and the lower triangle the variables plotted against each other 

with loess fit line. Microbial richness values are mean for the sampling square. In total there are 298 

sampling squares with aboveground information including 148 with soil microbial information. 
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Figure 3: Plant richness positively influences AM fungal richness at all pH values, with overall AM fungal 

richness being higher at pH values greater than 4 (n = 429).  
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Figure 4: Plant phylogenetic diversity has a positive effect on bacterial phylogenetic diversity at pH values 

greater than 4 (n = 431). 
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Figure 5: Correlation between heterotrophic phylogenetic diversity and bacterial phylogenetic diversity (n = 

423). 
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Figure 6: Predicted impacts of elevation (m a.s.l) and precipitation (mm y-1) on aboveground diversity in model with elevation, precipitation and plant diversity as predictors 

and year and vice county as group-level effects. A vice-county is a geographical division of the British Isles used for the purposes of biological recording and other 

scientific data-gathering. 
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Figure 7: Predicted impacts of elevation (m a.s.l) and precipitation (mm y-1) on aboveground diversity in model with elevation, precipitation as predictors and year and vice 

county as group-level effects. A vice-county is a geographical division of the British Isles used for the purposes of biological recording and other scientific data-

gathering. 
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Figure 8: The breakdown of the network cluster membership by phylum for bacteria (a), by group for heterotrophs (b), by class for fungi (c), and by Ellenberg N score for 

plants (d). Only clusters with over 100 members are shown; the other 14 clusters all had less than 20 members each. Panel e shows the location of each of these large 

clusters on the network diagram in Figure 5.11. 
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Figure 9: The variance partitioning for every bee, bird, butterfly and plant species split by cluster. Proportion of variance explained by rainfall is shown in blue, proportion of 

variance explained by temperature is shown in orange and proportion of variance explained by the random component which incorporates spatial variation is shown 

in grey. 
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Figure 10: A histogram showing the proportion of variance explained by the model (Tjur’s R2) for each species. 
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Figure 11: The breakdown of the network cluster membership by Ellenberg N score for plants (a), preferred habitat for birds (b) and butterflies (c), and bee/hoverfly identity 

(d). Only clusters with over 100 members are shown; the other three clusters all had one member each. Panel e shows the location of each of these large clusters on 

the network diagram in Figure 5.12. 
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APPENDIX H 

Supplementary information for Chapter 6 

 

  

Figure 1: Bacterial (left) and fungal (right) Shannon diversity by year, treatment and depth 

 

Figure 2: Bacterial (left) and fungal (right) inverse Simpson diversity by year, treatment and depth 
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Figure 3: Limited change in bacterial phyla composition with treatment in the different years and depths. 

 

Figure 4: Limited change in fungal phyla composition with treatment in the different years and depths. 
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Figure 5: The majority of fungal taxa were unassigned to trophic modes, with limited changes in the relative 

frequency of the trophic modes by treatment, year and depth. 
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Figure 6: Strength (top row) and degree distribution (bottom row) of the three networks: joint (both bacteria 

and fungi), bacteria only and fungi only. The transitivity of the networks, or clustering coefficients, were 

0.106 for the joint network, 0.131 for the bacteria network and 0.150 for the fungi network. 
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Figure 7: Microbial co-occurrence networks for bacteria and fungi together (A), bacteria only (B) and fungi only 

(C). Black links are positive, grey negative. The nodes are clustered together according to the 

Fruchterman Reingold algorithm (for graphical simplicity the fungal layout is based on the unweighted 

edges). Nodes are coloured by their preference for different treatments: green are control specialists, 

red warming specialists and blue drought specialists. A brown colour indicates no specialism. Data from 

2017 only. 
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Figure 8: The change in bacterial (top row) and fungal (bottom row) taxa with the treatments compared to 

control. Taxa that had an adjusted p-value of less than 0.1 are marked in red, all others are marked in 

black.  
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Figure 9: Heatmap of samples clustered by their transformed similarity according to DeSEq2 analysis of the 

fungal taxa. 
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Figure 10: The change in root distribution with depth across the treatments. The left shows the dry weight of all 

roots, the centre the dry weight of roots under 2 mm in diameter and the right the number of root tips. 
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Figure 11: The proportion of root that is colonised by DSE increases with depth in the control and drought 

treatments but not in the warming treatments. The blue lines represent the model estimated effects plus 

their error as a blue band. 
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Table 1: The most connected taxa within the networks and their taxonomic identification. Degree is the number of other taxa they are connected to, strength is the sum of 

all of the weights of the links connected to the taxa. The taxa with the top 10 degree, top 20 strength and top 10 negative strength are included here. 

Taxonomy Degree Strength Notes 

k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Rhodospirillales;f_ ;g_;s_ 19 2.397 
 

k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Xanthomonadales;f_Sinobacteraceae;g_;s_ 9 1.039 
 

k_Bacteria;p_Acidobacteria;c_Acidobacteriia;o_Acidobacteriales;f_Koribacteraceae;g_;s_ 6 0.966 
 

k_Bacteria;p_Acidobacteria;c_Solibacteres;o_Solibacterales;f_Solibacteraceae;g_Candidatus Solibacter;s_ 11 0.859 
 

k_Bacteria;p_Verrucomicrobia;c_[Pedosphaerae];o_[Pedosphaerales];f_auto67_4W;g_;s_ 18 0.802 
 

k_Fungi;p_Mortierellomycota;c_Mortierellomycetes;o_Mortierellales;f_Mortierellaceae;g_Mortierella;s_humilis 7 0.777 Undefined saprotroph 

k_Bacteria;p_Acidobacteria;c_Acidobacteriia;o_Acidobacteriales;f_Koribacteraceae;g_;s_ 11 0.681 
 

k_Fungi;p_Ascomycota;c_Leotiomycetes;o_Helotiales;f_Hyaloscyphaceae;g_Hyaloscypha;s_fuckelii 5 0.642 Undefined saprotroph 

k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Rhizobiales;f_Methylocystaceae;g_;s_ 11 0.639 
 

k_Fungi;p_Ascomycota;c_Eurotiomycetes;o_Chaetothyriales;f_unidentified;g_unidentified;s_unidentified 8 0.625 
 

k_Bacteria;p_Acidobacteria;c_DA052;o_Ellin6513;f_;g_;s_ 9 0.614 
 

k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Xanthomonadales;f_Sinobacteraceae;g_;s_ 5 0.609 
 

k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Rhizobiales;f_Methylocystaceae;g_;s_ 11 0.595 
 

k_Bacteria;p_Acidobacteria;c_Acidobacteriia;o_Acidobacteriales;f_Koribacteraceae;g_;s_ 8 0.587 
 

k_Bacteria;p_Acidobacteria;c_Acidobacteriia;o_Acidobacteriales;f_Acidobacteriaceae;g_;s_ 4 0.584 
 

k_Bacteria;p_Proteobacteria;c_Deltaproteobacteria;o_Syntrophobacterales;f_Syntrophobacteraceae;g_;s_ 5 0.574 
 

k_Bacteria;p_Acidobacteria;c_TM1;o_;f_;g_;s_ 10 0.561 
 

k_Bacteria;p_Acidobacteria;c_Solibacteres;o_Solibacterales;f_;g_;s_ 7 0.554 
 

k_Bacteria;p_Acidobacteria;c_Acidobacteriia;o_Acidobacteriales;f_Koribacteraceae;g_;s_ 5 0.552 
 

k_Bacteria;p_Acidobacteria;c_DA052;o_Ellin6513;f_;g_;s_ 6 0.550 
 

k_Bacteria;p_Acidobacteria;c_Acidobacteriia;o_Acidobacteriales;f_Acidobacteriaceae;g_;s_ 9 0.516 
 

k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Rhizobiales;f_Methylocystaceae;g_;s_ 11 0.457 
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k_Bacteria;p_Proteobacteria;c_Alphaproteobacteria;o_Rhizobiales;f_Bradyrhizobiaceae;g_Bradyrhizobium;s_ 11 0.340 Nitrogen fixing 

k_Bacteria;p_Acidobacteria;c_Acidobacteriia;o_Acidobacteriales;f_Koribacteraceae;g_Candidatus Koribacter;s_ 10 0.323 
 

k_Bacteria;p_Verrucomicrobia;c_[Pedosphaerae];o_[Pedosphaerales];f_[Pedosphaeraceae];g_Pedosphaera;s_ 13 0.159 
 

k_Bacteria;p_Proteobacteria;c_Deltaproteobacteria;o_Syntrophobacterales;f_Syntrophobacteraceae;g_;s_ 10 0.158 
 

k_Bacteria;p_Actinobacteria;c_Actinobacteria;o_Actinomycetales;f_;g_;s_ 12 0.015 
 

k_Bacteria;p_Proteobacteria;c_Gammaproteobacteria;o_Enterobacteriales;f_Enterobacteriaceae;g_Escherichia;s_coli 12 -0.032 
 

k_Fungi;p_Mortierellomycota;c_Mortierellomycetes;o_Mortierellales;f_Mortierellaceae;g_Mortierella;s_humilis 9 -0.145 Saprotroph 

k_Bacteria;p_Acidobacteria;c_Solibacteres;o_Solibacterales;f_;g_;s_ 4 -0.188 
 

k_Fungi;p_Ascomycota;c_Leotiomycetes;o_Helotiales;f_Helotiaceae;g_Meliniomyces;s_unidentified 3 -0.201 Saprotroph-Symbiotroph 

k_Bacteria;p_Acidobacteria;c_DA052;o_Ellin6513;f_;g_;s_ 6 -0.216 
 

k_Fungi;p_Ascomycota;c_Lecanoromycetes;o_Lecanorales;f_Ramalinaceae;g_Toninia;s_physaroides 3 -0.221 Symbiotroph (lichenised) 

k_Bacteria;p_Proteobacteria;c_Deltaproteobacteria;o_Syntrophobacterales;f_Syntrophobacteraceae;g_;s_ 4 -0.226 
 

k_Bacteria;p_Acidobacteria;c_Acidobacteriia;o_Acidobacteriales;f_Acidobacteriaceae;g_;s_ 4 -0.244 
 

k_Bacteria;p_Verrucomicrobia;c_[Methylacidiphilae];o_S-BQ2-57;f_;g_;s_ 3 -0.258 
 

k_Fungi;p_Ascomycota;c_unidentified;o_unidentified;f_unidentified;g_unidentified;s_unidentified 4 -0.279 
 

k_Bacteria;p_Verrucomicrobia;c_[Pedosphaerae];o_[Pedosphaerales];f_auto67_4W;g_;s_ 6 -0.284 
 

k_Bacteria;p_Acidobacteria;c_Acidobacteriia;o_Acidobacteriales;f_Acidobacteriaceae;g_;s_ 10 -0.462 
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Table 2: The microbial diversity and NMDS scores for the different samples. Columns are: Plot (plot number); Quad. (quadrat of plot that was sampled); Depth (T = topsoil, M 

= middle, S = subsoil); Year (2003 or 2017 sampling); Treatment (Control, drought or warming plot); BACT RICH (bacterial richness); BACT SHAN (bacterial Shannon 

diversity); BACT SIMP (bacterial Simpson diversity); BACT NMDS1 (score of first axis in bacterial NMDS ordination); BACT NMDS2 (score of second axis in bacterial 

NMDS ordination); FUNG RICH (fungal richness); FUNG SHAN (fungal Shannon diversity); FUNG SIMP (fungal Simpson diversity); FUNG NMDS1 (score of first axis in 

fungal NMDS ordination); FUNG NMDS2 (score of second axis in fungal NMDS ordination). 

Plot Quad. Depth Year Treatment BACT RICH BACT SHAN BACT SIMP BACT 
NMDS1 

BACT 
NMDS2 

FUNG RICH FUNG SHAN FUNG SIMP FUNG 
NMDS1 

FUNG 
NMDS2 

9 G9 T 2017 Control 536 5.64 0.007 -0.762 -0.877 224 3.51 0.07 -0.921 -0.014 

6 E7 S 2017 Control 512 4.95 0.018 1.148 -0.855 38 2.28 0.152 1.037 -0.219 

3 G9 T 2017 Control 296 4.48 0.033 -0.419 0.263 NA NA NA NA NA 

3 G2 T 2017 Control 481 4.94 0.02 -0.193 0.076 167 3.58 0.048 -0.336 -0.07 

3 B3 T 2017 Control 372 4.77 0.024 -0.542 0.025 170 3.56 0.054 -0.396 -0.076 

5 G2 M 2017 Drought 256 4.35 0.036 -0.136 0.647 NA NA NA NA NA 

1 F8 M 2017 Warming 301 4.56 0.024 0.283 0.439 NA NA NA NA NA 

3 G2 S 2017 Control 340 4.47 0.03 1.288 -0.083 42 2.44 0.126 0.931 0.229 

4 E4 T 2017 Drought 414 5.39 0.008 -0.809 -0.638 269 4.11 0.029 -0.828 -0.301 

7 B7 S 2017 Warming 439 5.34 0.01 -0.494 -0.366 175 3.61 0.049 -0.507 0.131 

1 NA T 2003 Warming 469 4.84 0.021 -0.565 0.058 NA NA NA NA NA 

2 D8 T 2017 Warming 426 5.43 0.008 -1.056 -1.053 158 2.88 0.145 -1.09 0.158 

7 C4 M 2017 Warming 341 4.6 0.022 0.014 0.598 NA NA NA NA NA 

2 G5 S 2017 Warming 296 4.4 0.034 0.085 0.739 NA NA NA NA NA 

4 E4 M 2017 Drought 482 5.08 0.015 0.442 -0.05 136 3.43 0.053 0.069 -0.281 

7 F5 M 2017 Warming 426 5.13 0.013 0.01 0.207 NA NA NA NA NA 

5 B6 M 2017 Drought 359 4.68 0.024 0.463 0.464 97 3.38 0.054 0.321 0.15 

7 C4 S 2017 Warming 408 5.09 0.012 -0.146 0.19 153 3.76 0.041 -0.109 0.037 

2 C2 T 2017 Warming 299 4.66 0.022 -0.569 0.136 NA NA NA NA NA 

8 C8 M 2017 Drought 526 5.55 0.007 -0.754 -0.663 253 3.87 0.043 -0.877 -0.138 

9 NA T 2003 Control 577 5.35 0.012 0.03 -0.05 132 3.83 0.043 0.034 0.015 
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8 F5 T 2017 Drought 415 5.19 0.012 -0.279 -0.202 NA NA NA NA NA 

9 NA S 2003 Control 776 5.56 0.012 0.722 -0.335 116 3.68 0.043 0.27 -0.065 

2 C2 M 2017 Warming 303 4.69 0.019 0.066 0.246 NA NA NA NA NA 

8 B7 M 2017 Drought 354 4.69 0.023 0.327 0.296 91 3.07 0.076 0.333 -0.008 

4 F8 T 2017 Drought 430 5.14 0.014 -0.536 -0.153 NA NA NA NA NA 

6 D5 M 2017 Control 381 5.14 0.011 0.012 0.09 157 3.5 0.054 -0.283 0.028 

1 F8 T 2017 Warming 350 4.92 0.018 -0.756 -0.213 108 3.01 0.116 -0.47 0.264 

8 C8 T 2017 Drought 302 4.55 0.025 -0.337 0.287 NA NA NA NA NA 

6 E7 T 2017 Control 377 4.94 0.018 -0.01 0.136 166 3.64 0.049 -0.34 0.137 

5 B6 S 2017 Drought 405 5.01 0.015 0.899 -0.015 64 3.03 0.074 0.598 0.052 

2 NA S 2003 Warming 647 5.55 0.008 1.017 -0.463 61 2.85 0.098 0.6 -0.132 

7 B7 M 2017 Warming 402 5 0.017 -0.124 0.076 NA NA NA NA NA 

7 NA T 2003 Warming 318 4.47 0.029 -0.256 0.894 48 2.73 0.094 0.461 0.529 

6 C2 T 2017 Control 281 4.45 0.031 -0.385 0.341 114 3.43 0.055 -0.087 -0.066 

9 D6 M 2017 Control 360 4.9 0.018 -0.226 0.352 147 3.8 0.034 -0.165 0.066 

3 G2 M 2017 Control 242 4.49 0.023 0.226 0.833 NA NA NA NA NA 

7 F5 T 2017 Warming 397 4.97 0.018 -0.221 0.067 NA NA NA NA NA 

4 D2 M 2017 Drought 423 5.2 0.013 -0.686 -0.286 184 3.88 0.036 -0.514 -0.158 

7 C4 T 2017 Warming 287 4.64 0.023 -0.305 0.333 NA NA NA NA NA 

5 F8 S 2017 Drought 390 5.14 0.012 0.384 -0.106 113 3.37 0.055 0.174 -0.193 

2 D8 M 2017 Warming 398 5.23 0.009 -0.98 -0.413 139 3.06 0.089 -0.793 0.25 

4 NA S 2003 Drought 419 4.84 0.016 0.243 0.389 50 2.41 0.172 0.563 0.169 

7 NA S 2003 Warming 335 4.45 0.025 0.183 0.739 45 2.92 0.074 0.579 0.393 

8 C8 S 2017 Drought 425 4.89 0.022 0.404 -0.143 95 2.96 0.119 0.245 -0.261 

4 E4 S 2017 Drought 519 5 0.019 0.74 -0.482 56 2.75 0.099 0.563 -0.207 

9 G9 S 2017 Control 423 4.98 0.016 1.174 -0.309 64 2.67 0.112 0.495 -0.479 

2 G5 M 2017 Warming 385 4.1 0.065 -0.429 0.31 NA NA NA NA NA 

9 D6 T 2017 Control 325 4.55 0.026 -0.147 0.477 NA NA NA NA NA 

5 B6 T 2017 Drought 509 5.46 0.008 -0.691 -0.633 182 3.58 0.057 -0.76 -0.084 
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5 F8 M 2017 Drought 318 4.56 0.023 -0.15 0.119 NA NA NA NA NA 

1 B4 S 2017 Warming 359 4.74 0.022 0.942 0.164 47 2.52 0.143 0.647 0.301 

4 F8 M 2017 Drought 396 4.73 0.031 -0.245 -0.117 NA NA NA NA NA 

8 F5 M 2017 Drought 403 4.87 0.022 0.161 -0.056 139 3.66 0.043 0.011 -0.313 

5 NA T 2003 Drought 507 5.03 0.016 -0.044 0.274 70 3.36 0.062 0.235 0.373 

2 NA T 2003 Warming 437 4.42 0.059 -0.818 0.055 113 3.34 0.054 -0.19 0.253 

2 C2 S 2017 Warming 395 4.88 0.019 0.219 0.131 NA NA NA NA NA 

9 E2 T 2017 Control 536 5.28 0.013 -0.176 -0.265 170 3.53 0.07 -0.385 0.314 

9 E2 M 2017 Control 411 5.03 0.016 -0.13 0.382 NA NA NA NA NA 

1 B4 T 2017 Warming 471 5.59 0.007 -1.041 -0.761 198 3.58 0.059 -0.958 0.131 

3 B3 M 2017 Control 348 4.74 0.024 -0.605 0.122 159 3.14 0.112 -0.341 -0.281 

6 D5 T 2017 Control 451 5.13 0.015 -0.587 -0.157 149 2.99 0.126 -0.461 -0.231 

3 G9 M 2017 Control 268 4.39 0.025 0.033 0.771 83 2.74 0.151 0.261 0.101 

5 F8 T 2017 Drought 427 5.47 0.008 -0.943 -0.652 265 3.97 0.046 -0.903 -0.097 

2 D8 S 2017 Warming 329 4.69 0.025 0.196 0.525 79 2.64 0.15 0.324 0.222 

5 NA S 2003 Drought 497 5.18 0.012 0.382 0.421 74 3.05 0.089 0.455 0.196 

1 NA S 2003 Warming 621 5.25 0.015 0.65 -0.014 69 3.34 0.051 0.467 0.06 

8 B7 T 2017 Drought 343 4.8 0.018 -0.28 0.224 NA NA NA NA NA 

8 B7 S 2017 Drought 531 5.16 0.012 0.991 -0.566 120 3.1 0.086 0.152 -0.298 

4 D2 S 2017 Drought 457 5.06 0.019 0.918 -0.603 58 2.7 0.113 0.626 -0.382 

3 B3 S 2017 Control 488 4.87 0.025 0.866 -0.636 46 2.94 0.07 0.707 -0.309 

1 D7 T 2017 Warming 488 5.39 0.009 -0.609 -0.277 184 3.69 0.051 -0.553 -0.031 

1 D7 M 2017 Warming 275 4.48 0.03 -0.003 0.576 107 3.06 0.091 0.083 0.168 

5 G2 T 2017 Drought 493 5.51 0.007 -0.949 -0.74 214 3.62 0.048 -0.92 0.045 

6 C2 M 2017 Control 286 4.41 0.042 -0.179 0.507 68 3.02 0.076 0.26 0.312 

6 E7 M 2017 Control 358 4.61 0.029 0.295 0.301 77 3.1 0.077 0.405 0.019 

7 B7 T 2017 Warming 447 4.92 0.022 -0.3 -0.024 NA NA NA NA NA 

6 NA T 2003 Control 451 4.89 0.02 -0.026 0.456 126 3.27 0.078 -0.096 0.294 

8 NA T 2003 Drought 632 5.42 0.01 -0.164 -0.4 136 3.58 0.073 -0.075 0.209 
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1 D7 S 2017 Warming 295 4.55 0.028 0.123 0.465 94 3.39 0.054 0.238 0.181 

2 G5 T 2017 Warming 378 4.6 0.031 -0.586 -0.054 NA NA NA NA NA 

9 D6 S 2017 Control 380 4.85 0.02 1.264 -0.39 77 2.51 0.171 0.491 -0.375 

1 F8 S 2017 Warming 369 4.73 0.021 1.321 -0.493 NA NA NA NA NA 

4 F8 S 2017 Drought 530 4.97 0.019 0.24 -0.351 NA NA NA NA NA 

1 B4 M 2017 Warming 319 4.73 0.024 -0.107 0.347 191 3.56 0.051 -0.482 0.041 

9 G9 M 2017 Control 424 4.93 0.017 0.175 0.084 NA NA NA NA NA 

8 F5 S 2017 Drought 310 4.71 0.02 1.113 -1.101 99 2.42 0.171 0.086 -0.604 

6 NA S 2003 Control 570 5.36 0.012 0.606 -0.116 116 4.04 0.025 0.256 0.008 

8 NA S 2003 Drought 494 5.07 0.014 0.099 0.529 115 3.71 0.04 0.175 0.158 

3 G9 S 2017 Control NA NA NA NA NA 92 2.8 0.103 0.363 -0.255 

4 D2 T 2017 Drought NA NA NA NA NA 166 3.56 0.057 -0.568 -0.242 

6 C2 S 2017 Control NA NA NA NA NA 106 3.21 0.078 0.21 0.047 

9 E2 S 2017 Control NA NA NA NA NA 55 2.69 0.145 0.682 0.13 
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APPENDIX I 

Topsoil physico-chemical properties from the 

Glastir Monitoring and Evaluation Programme, 

Wales 2013-2016 

Robinson, D. A.; Astbury, S.; Barrett, G.; Burden, A.; Carter, H.; Emmett, B. A.; 

Garbutt, A.; Giamperi, C.; Hall, J.; Henrys, P.; Hughes, S.; Hunt, A.; Jarvis, S.; Jones, D. 

L.; Keenan, P.; Lebron, I.; Nunez, D.; Owen, A.; Patel, M.; Pereira, M. G.; Seaton, F.; 

Sharps, K. Tanna, B.; Thompson, N.; Williams, B.; Wood, C. M. 

Published online on 2019-07-03 in the Environmental Information Data Centre under 

DOI: 10.5285/0fa51dc6-1537-4ad6-9d06-e476c137ed09. Supporting documentation is 

available online. 

Contribution statement: 

DAR led the soil work package and EIDC data preparation. SA and KS were database 

managers and provided quality assurance. GB, SH and IL led the soil preparation, and 

the pH, EC and LOI analyses, managed by JH. IL also led the archiving of soil samples. 

AB and AG managed the field teams, with co-ordination by AO. HC, AH, PK, MP, BT, 

and NT were laboratory analysts that performed the Olsen P, Total N&C and Total P 

analyses, managed by MGP. BAE was the GMEP lead scientist. CG and DN performed 

soil processing. PH, SJ and FS produced the R scripts for derived units and performed 

data quality control. BW managed the project. CMW performed data management 

and sample tracking. DLJ was the biodiversity science lead and work package co-

supervisor.  

https://doi.org/10.5285/0fa51dc6-1537-4ad6-9d06-e476c137ed09
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Abstract 

This data set includes a range of physico-chemical properties measured from topsoil 

within a wide range of land use types across Wales, collected as part of the Glastir 

Monitoring and Evaluation Programme (GMEP). The properties included are: soil 

organic matter (loss on ignition (LOI)), derived carbon concentration, total soil 

organic carbon (SOC), nitrogen, total soil phosphorous, Olsen-phosphorous (within 

improved land only), pH, electrical conductivity, soil bulk density of fine earth, fine 

earth volumetric water content when sampled and soil water repellency - water drop 

penetration time. 

The monitoring programme was set up by the Welsh Government in 2013 to monitor 

the effects of the Glastir agri-environment scheme on the environment and ran from 

2013 to 2016. The field survey element was based on a stratified random sampling 

design of 300 x 1km square sites across Wales, and was managed by the Centre for 

Ecology & Hydrology. 

Provenance & quality 

Within each of 300 x 1km sample squares, a set of soil samples were taken from 5 pre-

determined randomly dispersed locations (where practically possible). The soil sample 

analysed for soil metrics was taken using a black plastic core ('C-core'), 15cm long, 

from a location co-incident with vegetation surveys. 

After collection, the soil cores were refrigerated and stored until posted, usually within 

a couple of days, to laboratories at the Centre for Ecology & Hydrology (CEH), Bangor 

and Lancaster. Analysed data were transferred to secure databases at CEH following 

sample analysis. 
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APPENDIX J 

Dataset title: Soil bacterial and fungal 

communities from the Climoor long term climate 

change experiment in Clocaenog forest 

Seaton, F.M.; Goodall, T.; Reinsch, S.; Griffiths, R.I.; Robinson, D.A.; Jones, D.L; 

Brooks, M.R., Emmett, B.A. 

Published online in the European Nucleotide Archive under primary accession 

reference PRJEB33721. 

Contribution statement: 

FMS led the sampling design, carried out soil sampling, data quality control and 

uploaded the sequences to the archive. TG performed all laboratory analyses under the 

supervision of RIG. SR, BAE, DAR and DLJ provided input into the sampling design. 

SR, MRB and BAE support the Climoor experiment. 
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Abstract 

This dataset is the DNA sequences from Illumina MiSeq sequencing of the bacterial 

16S and fungal ITS2 genes in Clocaenog soils. Soil samples were collected from the 

climate change field site Climoor that is located in Clocaenog forest, Northeast Wales 

during 2003 and 2017.  

The experimental field site consists of three untreated control plots, three plots where 

the plant canopy air is artificially warmed during night time hours and three plots 

where rainfall is excluded from the plots at least during the plants growing season 

(March to September). The Climoor field experiment intends to answer questions 

regarding the effects of warming and drought on ecosystem processes and has been 

running since 1999. The microbial community data aims to understand how changes 

in soil hydrological and chemical properties have influenced the soil microbial 

composition and the implications of this for biogeochemical cycling. 

Provenance & quality 

Soil samples were collected in February 2003 and February 2017 respectively by 

students and staff at the Climoor field site. They were stored at -20°C in CEH Bangor 

until transported to and sequenced at CEH Wallingford. A small portion of soil 

(~0.2g) was taken from each sample and the DNA extracted using a MOBIO 

PowerSoil® extraction kit. The 16S genes were amplified using primers for the V4 

region (primers 515F-806R, as in the Earth Microbiome Project) and the ITS2 genes 

amplified using primers from Ihrmark et al (FEMS Microbiol Ecol 82 (2012) 666–677). 

The DNA was sequenced upon an Illumina MiSeq system.  
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APPENDIX K 

Dataset title: Calluna vulgaris root length and 

fungal colonisation data from the Climoor long 

term climate change experiment in Clocaenog 

forest 

White, N.; Seaton, F.M.; Reinsch, S.; Smith, A.R.; Brooks, M.R., Emmett, B.A. 

Published online in the Environmental Information Data Centre under DOI: 

10.5285/3d468857-f5d0-4dc4-88f3-6be6df19608b. Supporting documentation is 

available online. 

 

Contribution statement: 

NW performed all soil sampling and laboratory analyses under the supervision of ARS. 

FMS performed data quality control and prepared the data submission. SR, MRB and 

BAE support the Climoor experiment. 

  

https://doi.org/10.5285/3d468857-f5d0-4dc4-88f3-6be6df19608b
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Abstract 

This dataset contains root length, biomass and fungal colonisation data for Calluna 

vulgaris from control, drought and warming treated soils from the long term climate 

change experiment in Clocaenog forest. Soil samples were collected from the climate 

change experiment in Northeast Wales during April 2015. Roots were separated from 

the soil, their length and biomass measured and then analysed using microscopy for 

Ericoid mycorrhizae (ErM) and dark septate endophyte (DSE) colonisation of Calluna 

vulgaris. 

The experimental field site consists of three untreated control plots, three plots where 

the plant canopy air is artificially warmed during night time hours and three plots 

where rainfall is excluded from the plots at least during the plants growing season 

(March to September). The Climoor field experiment intends to answer questions 

regarding the effects of warming and drought on ecosystem processes and has been 

running since 1999. The root length and fungal colonisation data aims to understand 

how changes in soil hydrological and chemical properties have influenced Calluna 

vulgaris rooting behaviour and interactions with the soil microbiome. 

 

Provenance & quality 

Soil cores of 8 cm diameter and depth were collected from each plot near the base of 

Calluna vulgaris on the 1st April 2015, then transported back to Bangor and stored at 

4°C until further processing. Cores were cut from the top into 1 cm deep subsections. 

Each subsection was soaked in deionised water and agitated to break up the root/soil 

clumps. Roots confidently identified as C. vulgaris were removed using forceps and 

thoroughly washed in tap water. Necrotic or rotting roots were discarded.  

WinRHIZO version 3.2 was used to measure the length and diameter of cleaned 

subsection roots on a flatbed scanner. Roots were positioned without overlapping, 

submerged in 5 mm tap water to improve scanning accuracy. Acquisition parameters 

were set using the TWAIN interface in professional mode: positive film, 24 bit and 

300 dpi. Post scanning, ten of the finest roots were manually selected from each 
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subsection for microscopic investigation. The remaining roots were oven dried at 70°C 

for 24 hours, producing dry weight data for those < and > 2mm in diameter. 

All core fragments for microscopic assessment were soaked over 20 hours in 10% 

KOH. Roots were thoroughly rinsed in deionised water and heated in a water bath at 

90°C for 15 minutes in 5% vinegar-ink solution. Roots were rinsed, acidified and de-

stained by soaking in tap water with a few drops of vinegar for a further 20 minutes. A 

compound microscope was used to estimate proportional colonisation using the 

magnified intersection technique, with a scale bar cuticle instead of cross-hair and at a 

40x magnification. Roots were cut approximately 1-2 cm in length, with 2 mm passes 

made along each root length. All cortical cells were examined for colonization by 

Ericoid mycorrhiza and dark septic endophytes, working through the plane of focus. 

Each interval was categorised based upon Ericoid mycorrhiza colonisation into 0 %, < 

1 %, < 10 %, < 50 %, > 50 % and > 90 % colonisation. 

 


