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THESIS SUMMARY

Soil health and function is key to general ecosystem health and human society, yet
soils are under ever-increasing pressure from anthropogenic activities. The complexity
of the soil system, with physical, chemical and biological factors interacting, make it
difficult to understand what underpins soil health. The technical capabilities within
soil science are greater than ever before, generating vast amounts of data. Despite this,
identifying the key properties and interactions that influence soil health at policy-
relevant scales remains an ongoing challenge. Evaluating current soil health and
predicting future responses to global change therefore requires soil information at
national levels as well as experimental analyses. The objectives of this thesis were (i) to
evaluate the state of soils in Wales in regard to their physicochemical properties and
biological communities, (ii) to establish the relative roles of physicochemical and
biological factors in determining soil biodiversity, (iii) to explore the associations
between soil physical properties and biological communities across Wales, and (iv) to
evaluate the impact of climate change on soil microbial communities and function.
This thesis combined soil physicochemical and microbial community characterisation
through DNA sequencing results from a national scale field survey of the Welsh
landscape and a long term climate change experiment in order to identify key
dynamics and better predict responses to future change. Results from the national
scale field survey indicated that soil pH and carbon drive many of the gradients in soil
physicochemical and biological properties across Wales, with limited impact of land
use. The Welsh soil landscape was largely split into two groupings: that of the near-
neutral soils underlying improved and neutral grasslands, and that of the acidic soils
that underlie bogs, heathlands and acidic grasslands. Soil microbial diversity was
positively driven by soil pH, with soil textural heterogeneity increasing bacterial
diversity once the increase with pH and decrease with carbon was accounted for. Soil
physical properties were both influencing biological communities and being
influenced by them, as shown by soil surface water repellency being associated with
plant and microbial community composition. Plant and soil microbial diversity were
positively correlated but this was driven entirely by changes in soil pH. However, the
composition of above and belowground communities showed associations even after
accounting for environmental gradients. In the long term field experiment, soil
bacterial and fungal communities responded to experimental drought and warming,
yet at a Welsh landscape scale microbial communities were largely unresponsive to
climatic variables. Plant communities were an important link between climate and
land use drivers and soil biological and functional responses. The combination of soil
physicochemical, microbial and aboveground information throughout this thesis
provides new understanding of the complex interactions and feedbacks that underpin
soil health and function. Consideration of these dynamics is key to evaluating and
monitoring soil health and resilience to future change.
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CHAPTER 1

Introduction

Monitoring and analysis of the structure, function and biodiversity of soils



Increasing human population and per capita demand for resources is putting greater
strain on ecosystems, both natural and anthropogenic (Millennium Ecosystem
Assessment, 2005; Tilman et al., 2011; United Nations, 2015). This is unlikely to cease
in the near future, and attempts need to be made to reconcile the demands upon the
environment for resources and maintaining the health of the planet (Foley et al., 2011;
Rockstrom et al., 2009). Determining what we believe to be a healthy ecosystem is
difficult and controversial, as there are numerous potential definitions which, while
superficially similar, can lead to completely different results or viewpoints (Vieweger &
Déring, 2015). In order to sustainably manage ecosystems clear goals are needed
alongside a deeper understanding of relationships between different ecosystem
properties. Much of the work on quantifying ecosystem properties has focused upon
the aboveground system (Costanza et al., 1997; Tilman et al., 2013). However, the
importance of soils and the belowground ecosystem and interactions between above
and the belowground are increasingly being recognised as important for biodiversity
and ecosystem service delivery, whilst soil information is integrated increasingly into

conservation practice (Banwart, 2011).

Few people consider soils in their day-to-day lives, yet they are of undeniable
importance to humanity. Degradation of soils limits functionality and has been
important throughout history, with soil salinisation and erosion underpinning the
breakup of many ancient civilisations (Evans et al., 2018; Hillel, 1992; Jacobsen &
Adams, 1958). The impacts of soil degradation events on ecosystem properties and
human society can be observed for hundreds of years, if not thousands, yet practices
that degrade soil are still occurring today (Hall et al., 2013). This is particularly
concerning due to the wide range of services soils provide to humanity (Robinson et
al., 2014). Historically, most soil research has had an agricultural focus, yet soils are
not just important to humans for growing crops. They perform many other functions
and support the delivery of ecosystem services, especially for earth system regulation,
including the storage of 1500-2400 Pg of carbon globally, around four times the
amount stored in vegetation (Stocker et al., 2013). Soils act as essential regulators of

nutrient cycling, the water cycle and act as a reservoir of many valuable resources



(Blum, 2005). The ability of any given soil to perform these essential functions is often

defined as soil quality, or soil health (Biinemann et al., 2018; Kibblewhite et al., 2008).

Determining how to define soil quality, or health, is part of a wider discussion around
the best way to present the status of global ecosystems in all of their complexity. The
ecosystem services concept attempted to reframe the discussion around ecosystem
conservation through determining the benefits, or services, provided to humanity by
various ecosystem components (Daily, 1997). These ecosystem components are termed
natural capital, an example of this framework as applied to soils is presented by
Dominati et al. (2010). This approach has proved popular and underpinned various
assessments of ecosystem quality (Millennium Ecosystem Assessment, 2005; UK
National Ecosystem Assessment, 2011), as well as more controversial attempts to
assign monetary value to global ecosystem services (e.g. Costanza et al., 1997). The use
of this approach within the Millennium Ecosystem Assessment found that 60% of the
ecosystem services they examined are being degraded or used unsustainably, with
future declines and non-linear changes in ecosystem quality expected. However, the
ecosystem service approach has also had detractors, with the term proving vague to
apply in practice (Danley & Widmark, 2016; Potschin & Haines-Young, 2016), and
many objecting to the presentation of ecosystems solely in terms of their extrinsic
value to humanity (e.g. Peterson et al., 2010; Puig de la Bellacasa, 2015). All of the
frameworks used for presenting ecosystem, and soil, quality require an understanding
of how the measurable properties within ecosystems relate to emergent behaviour
such as resilience to stress and support of key services. Establishing these linkages
between different ecosystem properties remains an ongoing challenge in evaluating all

of the different frameworks of ecosystem quality.

Identifying key soil quality indicators is a challenge and has rarely been done in
relation to specific threats, functions or ecosystem services in order to evaluate soil
quality (Binemann et al., 2018). In fact, we still have relatively poor understanding of
how specific soil properties link to soil functions at a spatial and temporal scale of
interest to humanity (Kibblewhite et al., 2016). Soil biodiversity has been suggested as
a potential indicator of soil quality and health (Maron et al., 2018; Ritz et al., 2009).

Biodiversity within soils is high; soil organisms are estimated to represent 25% of all



described species and the lower effort put into describing soil organisms potentially
means that this is an underestimate (Decaéns, 2010). Biodiversity is of interest as it
has been found to relate to the resilience of ecosystems, proposed to be the criterion
for ecosystem health (Déring et al., 2015; Tilman et al., 2013). Also, soil biodiversity
may represent a hitherto little explored resource for medicines and other substances,
with promising new antibiotics being recently discovered (Ling et al., 2015). However,
soil biodiversity comprises many different domains and trophic levels with each one
being relevant to different functions, if any, and all being challenging to measure.
Some researchers have used multitrophic diversity to address this issue (Soliveres et
al., 2016), but these results are often highly dependent upon the organisms included

within the analysis as well as potentially obscuring finer-scale detail.

In this era of ever increasing pressure on natural ecosystems and soil it is essential to
monitor ecosystem change over time. Soil is an integral part of natural ecosystems,
and is required for biomass production whilst also representing a valuable store of
carbon and other resources. The need to produce food for the industrial revolution
meant that early work on soils focused on inventory and suitability for crop growth,
which evolved into soil surveys in many countries in the 20th Century. If ecosystems
are to be managed for long-term sustainability then an understanding of the long-
term response of soil to environmental change is essential (Tugel et al., 2005). This
requires a shift in the way we observe soils, moving away from inventory towards a
monitoring of change and undertaking experiments to understand soil response to

potential change.

1.1 Interplay between soil structure and biology

Soil structure is a dynamic soil property, influenced by physical, biological and
anthropogenic processes. While it is well understood that processes such as tillage
have a strong and lasting impact on soil structure, causing compaction and increasing
soil erosion, the impact of certain biological processes on soil structure are still being
discovered. We are beginning to establish what kind of feedback processes exist
between the soil structure and biological activity. For example, the feedbacks

determining soil carbon content are of great interest due to the role of soil carbon in



determining the water storage capability, the predominance of anoxic metabolic
processes and thus greenhouse gas emissions and global biogeochemical cycles. There
have been recent results suggesting that the physical location of the carbon within the
soil is important in controlling its degradation, with more carbon being decomposed
within pores of 30-100 pm diameter which constitute an optimal habitat for microbial
activity (Kravchenko et al., 2019; Quigley et al., 2018). The migration of carbon
between the different pore sizes of soil will strongly influence the eventual fate of said
carbon, showing the interplay of soil structure and biology in determining carbon
storage. The difficulties involved in determining which processes are relevant and
dominate in the field are immense, but through a careful combination of experiments,

observations and modelling these questions can be answered.

1.1.1 Influence of soil structure on microbes

The structure of a soil influences the biological communities that can proliferate and
function within it. Soil is highly heterogeneous and consists of multiple micro-
habitats, which can provide different physicochemical environments and support a
variety of different organisms (Vos et al., 2013). The heterogeneity in microhabitats
can influence a variety of different taxa, ranging from plants and macrofauna through
mesofauna and microbial communities (Burton & Eggleton, 2016; Hu et al., 2014;
Stromberger et al., 2012; Vos et al., 2013). Different microbes prefer different chemical
and physical environments, ranging from preferences in oxic vs anoxic conditions to
preferences for certain minerals (Nishiyama et al., 2012) and particle size fractions
(Hemkemeyer et al., 2018; Poll et al., 2003). The soil structure and microhabitats
available can strongly influence microbial community assembly and response to

external inputs (Neumann et al., 2013).

The heterogeneity of the soil environment can inform the physical niche space
available to the microbial community and the connectivity of different microbial
communities, with implications for community assembly. The texture of a soil
influences the structures that can develop there, with implications for pore space and
soil hydraulic properties (van Genuchten, 1980). This then influences the microbial
communities found within a soil, as found in experimental results. One study found

that manipulation of the particle size distribution within soil mesocosms had a greater
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impact on microbial community structure than pH alteration (Sleutel et al., 2012),
while another found that low pore connectivity increased bacterial diversity in soil
(Carson et al., 2010). Alteration of the physical environment will also change the
chemical environment of the soil, and these have to be considered in tandem within

semi-natural ecosystems.

The chemical environment of the soil is known to be important in determining the
biological communities that can exist there. At the national and global scale, pH is the
strongest driver of soil microbial diversity and composition (Bickel et al., 2019;
Delgado-Baquerizo et al., 2018; Griffiths et al., 2011; Hendershot et al., 2017; Lauber et
al., 2009). Climatic influences also express themselves as apparent drivers of the soil
microbial community at large spatial scales, but these may be mediated by changes
within the soil physicochemical properties (Bickel et al., 2019; Delgado-Baquerizo et
al., 2018; Tedersoo et al., 2014). At finer spatial scales the influence of the variety of
soil nutrients, habitat variation and plant community dynamics become greater (Cao
et al., 2016; Constancias et al., 2015; Ranjard et al., 2013). However, clearly the biotic
communities within soils possess the ability to modify their physicochemical
environment which makes it difficult to predict the impact of future change in the

environment upon soil ecology.

1.1.2 Influence of biology on soil structure

Soil organisms can influence their environment through the exudation of substances,
binding together of particles, preferential breakdown of soil material, or even simply
by moving through the soil. Many soil organisms can produce highly water repellent
organic matter, which influences the wetting behaviour of the soil and aggregate
formation and stability. Fungi have been known for many years to produce
hydrophobic surfaces on their hyphae, hypothesised to reduce water loss and increase
drought tolerance (Duddridge et al., 1980; Read et al., 1985; Unestam, 1991). Recently
however, biofilm production by bacteria has also been found to lead to the creation of
extremely water repellent surfaces (Epstein et al., 2011). Mucilage produced by plants
and microbial biofilms has been shown to strongly influence rhizosphere rewetting
behaviour (Benard et al., 2018). These exudates can influence both water movement

through the soil and the creation of soil aggregates.



Soil structure has been described using a recursive model, where particles make up
microaggregates which are then themselves bound together into macroaggregates.
This perspective on soil, where the patterns of soil structure remain similar across
spatial scale have prompted some to describe soil as a fractal system (Grout et al.,
1998; Millan et al., 2003; Tyler & Wheatcraft, 1992). There has been much research on
the relationships between soil aggregation and microbial communities (Gupta &
Germida, 2015). It is clear that microbial communities are both influenced by the
presence and structure of soil aggregates and promote their formation (Tecon & Or,
2017; Totsche et al., 2018; Totsche et al., 2010). Plant and fungal communities have
been shown to promote soil aggregation both together and independently of each

other (Hu et al., 1995; Miller & Jastrow, 1990).

Almost no soils exist with only the microbial part of the food web, and the role of
plants and soil macrofauna in determining soil structure and microbial community
response cannot be ignored. Plants and macrofauna can change both the soil chemical
environment and physical environment through exudation/excretion and bioturbation
of the soil. This has implications for the microbial communities that live in the soil, as
they may form close interactions with plant roots, be transported by macrofauna
through the soil and feed off the deposits from the larger flora and fauna (Read &
Perez-Moreno, 2003; Yang & van Elsas, 2018). Interestingly, there are suggestions that
the influence of the differing ecological niches within soil may be greater upon bulk
soil fungal communities than rhizosphere communities, indicating the importance of
the fine scale variation in soil to not only niche creation but the factors driving
community assembly and function (Beck et al., 2015). Understanding how the
different trophic levels interact to influence soil structure is key to evaluating how

future change will impact soil function.

1.1.3 Relevance to future change and stress resilience

The ability to bio-engineer their environment may determine the resilience of
organisms to stress. Within both semi-arid and peatland ecosystems the presence of
rhizosphere or soil surface hydrophobicity induced by plants can increase tolerance of
either drought or fire events (Kettridge et al., 2014, 2017; Robinson et al., 2010;

Verboom & Pate, 2006). These processes may not be aimed at directly bio-engineering
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the soil environment, as they may occur at the organism scale due to the increased
above-ground stress tolerance or competitive ability conferred by the ability to alter
the immediate environment. For instance, in plants the ability to alter rhizosphere
hydrophobicity has been shown to confer a competitive advantage due to increased
acquisition of water (Kroener et al., 2016; Zeppenfeld et al., 2017). In general, the
production of extracellular polymeric substances can improve the resilience of
organisms to diverse sources of stress (Costa et al., 2018). As environmental sources of
stress increase, these abilities could become increasingly important for survival within
ecological communities. Resilience has been proposed as a universal criterion of
health, therefore the ability of soil organisms to influence their physical environment

under this paradigm could be a key determinant of soil health (Déring et al., 2015).

1.2 Making predictions and mitigating issues

The overall goal of soil science is usually to offer solutions to the current challenges
facing soils across the globe today, and to predict how future changes will impact soils
and their functions. These objectives require an understanding of the mechanisms
that underlie soils, and the ability to make causal inferences about how soils work. The
aforementioned feedbacks between soil physicochemical properties and the biotic
communities that exist in soils pose an issue to establishing the causal mechanisms of
relevance to soil management. To address this, we need a combination of
experimental, survey and monitoring work to establish which mechanisms plausibly

exist and which are relevant at the field and national scale.

1.2.1 Experiments vs field surveys

Soil experiments are useful in that we can manipulate pressures and then analyse the
change in response to a certain treatment; while monitoring examines the state and
change (Lawrence et al., 2013; Richter et al., 2007). The two approaches provide a
powerful combination for understanding drivers of soil change. Long-term monitoring
programmes and soil experiments are increasing in number and many useful insights
have been gained into long-term behaviour of soil (Richter et al., 2007; Téth et al.,
2013). These range from examining long term impacts of fertiliser application on soil

fertility to the impacts of climate change on soil biogeochemical cycling (Edmeades,



2003; Lapenis et al., 2008; Ren et al., 2018). Experiments provide opportunities to
explore what exact response will result from a specific intervention, enabling more
stringent exploration of mechanisms at the expense of generality across landscapes

and spatial and temporal scales.

The real-world response of soil at a national level to global change can be better
understood through long-term monitoring programmes. The Countryside Survey in
Great Britain was pioneering in this context and has provided evidence of soil change
since 1978 (Emmett et al., 2010; Reynolds et al., 2013). Unlike systematic surveys used
for inventory, the Countryside Survey is statistically robust, allowing reporting of
uncertainty. The robust design has led to the adoption of similar designs at the EU
level, for example the Land Use/Land Cover Area Frame Survey (LUCAS) topsoil
database covers 25 member states of the European Union and provides a basis for soil-
related policies (Orgiazzi et al., 2018; Téth et al., 2013). However, there is increasing
demand from policy-makers for the ability to link these large-scale monitoring
approaches to agri-environment policy outcomes in order to evaluate current policy.
This requires a combination of monitoring, experimental and modelling approaches,
and the implications of this for inferring the potential impacts of interventions need to
be considered within the framework of causal inference in order to evaluate its

potential strengths and shortcomings.

1.2.2 Causal inference

Established practice when dealing with observational data has been to discuss the
results in terms of associations and correlations, but to avoid as much as possible
referring to causal linkages. Unfortunately, the careful selection of language will not
prevent readers from inferring results in a causal sense, and many observational
results fill gaps in the literature due to the impossibility and/or impracticality of doing
an equivalent experiment. Therefore there has recently been work on the use of
approaches such as directed acyclic graphs (DAGs) to inform causal interpretation of
observational research (Pearl & MacKenzie, 2018; Rohrer, 2018). A DAG consists of a
graphical model, where there are nodes (representing variables) connected by
unidirectional arrows (representing causal links), see example in Figure 1.1. They are

acyclic in that there are no feedback loops within the model. These approaches are



designed to enable careful consideration of confounding variables through the

building of graphical causal models.

Careful consideration of the causal hypotheses underlying our data, potentially
through creating a DAG, informs us which variables need to be controlled within our
analysis in order to determine the direct influence of one variable upon another.
Often, to identify the direct effect of one variable upon another scientists statistically
control for as many other variables as possible. However, this practice will not
improve estimates of direct effects, actually distorting the actual effect (Spector &
Brannick, 2011). These approaches can be made worse by not including information on
measurement error into the model, even at large sample sizes and moderate error

rates (Westfall & Yarkoni, 2016).

Figure 1.1: A DAG showing the hypothesised relationships between soil carbon, water and pH. The arrows

indicate that carbon acts as a causal influence on water and pH, while water causally influences pH.

If we wish to estimate the impact of one variable on another when they both share a
common cause then we need to account for the common cause, or confounder. Take
the DAG shown in Figure 1.1. If we are to estimate the impact of water upon pH then
we need to control for the impact of carbon on pH. This is easily done by including
carbon as well as water as predictors of pH within the regression model. This step is
necessary if we wish to evaluate the potential impact of changing the water content of
the soil on pH. The use of observational data to infer the outcomes of interventions

requires the control of confounders.

What if we were to condition upon a variable that is not a common cause, but instead
influenced by both the other variables? Variables within DAGs that have arrows

pointing at them only in a path are referred to as colliders. For example, in the above
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figure pH is a collider between carbon and water. If we wished to discover the impact
of carbon on water content we simply need to run a model with carbon as the sole
predictor. If we were to condition on pH by adding it to the model we would lose the
effect of carbon on water. Figure 1.2 shows a simulated dataset where water is a
function of carbon, and pH a function of water and carbon together. Modelling water
as a function of carbon leads to a coefficient on carbon of 0.85 (+0.1 S.E.) - close to the
true coefficient of 1. If we were to condition on pH, we would estimate the impact of
carbon as -0.02 (+0.13 S.E.), while pH would be estimated to have a significant impact
of 6.30 (£0.71 S.E.). However, we know that this is not the true model. Widely used
approaches such as information criteria would not be able to pick the true causal
model, in fact in this case the best model by AICc is the one which includes pH
(AAICc = 65).
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Figure 1.2: The relationship between carbon and water, with points colour coded by pH. This data was

simulated based on the DAG in Figure 1.1.

This collider effect can occur without explicitly conditioning on a collider within a
model. For example, say you are interested in the relationship between bird
abundance and flowers and you are studying arable systems. It is plausible that within
the area you are studying that only areas with lower bird and flower abundance are
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used for crop production due to nature conservation constraints. Across the entire
landscape there may be no relation between bird and flower abundance, yet within
arable sites there will be a negative relationship between birds and flowers. Here the
arable variable is the collider, and the fact that the study is limited only to arable sites
is equivalent to conditioning on this collider. Figure 1.3 shows this for a simulated data
set. For the whole landscape there is no link from flowers to birds (-0.01 £0.03), while

in arable sites there is a negative relationship (-0.22 +0.05).
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Figure 1.3: The relationship between flower and bird diversity in a simulated dataset. If the combined diversity
is above 50 then the site is categorised as not arable. Note the decreasing bird diversity with increasing

flower diversity in arable sites, while overall there is no pattern.

It is tempting to consider experimental results to give definitive answers as to the
causal effects of a certain treatment. However, interpretation of experimental results
can easily fall into certain traps which can lead to erroneous conclusions. For example,
in many experiments it is common to control for post treatment variables, however,
this can lead to violation of the assumption of random assignment of treatments
which can profoundly bias the results (Montgomery et al., 2018). This is equivalent to

conditioning on a collider, as discussed above. Careful consideration of the proposed
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mechanisms underlying the behaviour of soils is needed for both observational and

experimental results.

1.2.3 Information theory

With the use of new technologies in soil science has come an increasing amount of
information with a relative decrease in the amount known or hypothesised about this
information. Examples of this include the increasing use of laser granulometry in
particle size distribution causing a switch from a 3-category system (sand, silt, clay) to
over a hundred particle size bins (Bieganowski et al., 2018). On a larger scale within
soil microbial studies the advent of next generation sequencing has led to the genetic
characterisation of thousands of microbes within a single soil sample, many of which
were previously unknown, unculturable, or with limited taxonomic and functional
metadata (Knight et al., 2018). This proliferation of data has required more tools and
metrics to characterise the soil system. To do so in a way that is both accurate and
useful is a work in progress, as we attempt to take that which is incomprehensible in

its complexity and boil it down to a set of simple results and rules.

1.2.3.1 Information diversity

Quantifying the information content of a selection of objects is an issue that was
addressed by Shannon with respect to communication systems through the creation of
his entropy index (Shannon, 1948). This H index has proven to be a key measure of
information, choice, and uncertainty, and is given by adding together the probabilities

of each event (p;) multiplied by the logarithm of the probabilities.

n
H=- Z p;log(p;) Equation 1.1
i=1

Within ecological research this is used as a metric of biodiversity where the
probabilities are represented by the proportions of the different species. Other
biodiversity metrics also fall into a similar information theory framework. Hill laid out
this framework that involved measuring biodiversity taking into account both species
richness and relative abundances (Hill, 1973). If p; is taken to be the proportion of the

total sample represented by the species then a useful metric is the average of p; across
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the sample. This can then be weighted, i.e. the impact of rare species versus common

species changes by varying the exponent, q.

n 1/(q-1)
p; = (Z Piq> Equation 1.2
i=1

In equation 17 is the total number of species. True alpha diversity ( ?D,) can be
defined as the inverse of p; and can be understood as the effective number of species
in a sample (Hill, 1973; Tuomisto, 2010). In the case that q = O then the true diversity
will be the same as species richness. As q increases it can be thought of as examining
the sample in less detail, so that only the most common species are recorded and the
effective number of species declines (Hill, 1973). The Simpson’s index occurs at g = 2
and calculates the mean proportional abundance of the sample, which can then be
transformed into an effective number of species by inversion (Simpson, 1949). At q =
1 Equation 1.2 will not work due to division by O, however it can be shown that as q
tends to 1 this become the Shannon information entropy in Equation 1.1. The effective

number of species in the sample when q = 1 is therefore:

p

. Equation 1.3
=exp| — Z piln (p;)
i=1

Within this framework it can be seen that the Shannon-Weaver index of biodiversity
places more emphasis on rare species than the Simpson index. This is because the g
value is lower (1 < 2), and as discussed above this means the sample is effectively being
examined in more detail. Although many studies report the weighted mean
proportional abundance (e.g. the Shannon-Weaver index) the effective number of
species (e.g. the exponential of the Shannon-Weaver index) is often intuitively easier
to understand. The effective number of species also holds useful mathematical
properties, such as always being positively correlated with the number of actual
species (Hill, 1973; Jost, 2007; Tuomisto, 2010). Alternatively, there are diversity
metrics based upon theories on species abundance distributions (Fisher et al., 1943;
Hill, 1973; Magurran, 2004), however careful attention must be paid to the underlying

assumptions of these models. Box 1.1 represents a few examples of different metrics of

14



biodiversity, and how they vary as the relative abundance of the different species

change.

Box 1.1 A comparison of diversity indices:

A B

Diversity indices for three theoretical sites are shown. Each individual is

represented by a square that is colour coded according to species. Despite having
the same species number each site has very different patterns of species abundance.
This can be summarised using the true diversity at =1, the inverse of the Shannon-
Weaver index, and the true diversity at q=2, the inverse of the Simpson index. This

is shown in the table below.

Site Species g=1 q=2
Number Index True diversity | Index True diversity
A 10 2.3 10 0.1 10
B 10 0.5 1.6 0.8 1.3
C 10 1.7 5.5 0.2 4.2

In many cases when dealing with information the scale at which the data is examined

will influence the amount of information that is gathered. Within chaos and fractal

theory the aforementioned information functions are extended into the Rényi

dimensions, modifying by the division of the information function by the logarithm of

the scale (Peitgen et al., 1992). First, the information function for a given scale (s) and

exponent (q):
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1 N(s)
I,(s) = -1 log, Z p;? Equation 1.4
i=1

The Rényi dimension D, for the parameter q is given by:

I,(s
D, = limL

Equation 1.5
s—0log, 1/s

At g = 1 Equation 1.4 is not directly applicable, so we use the limit of /,(s) as g — 1:

N(s)
}zi_r)r% Ig(s) = - Z pilog(p;) Equation 1.6
i=1

Observe that the information function here is the same as the Shannon entropy as
described before, demonstrating that the Rényi information dimension D; represents
what the information entropy would be at the finest scale of scrutiny. Other special
dimensions within the Rényi dimensions are the box-counting dimension (D,) and the
correlation dimension (D, ). The development of these within fractal theory allows
description of how much information we expect the system would hold at the finest
scale. These dimensions are often applied to characterise the soil structure through
analysis of the particle size distribution or pore distribution (Caniego et al., 2003;

Grout et al., 1998; Tyler & Wheatcraft, 1992).

1.2.3.2 Composition

In many cases we are not just interested in the presence or absence of units, such as
species, but in their identity and the relative composition of different sites. Some types
of information can be encoded into information indices, such as phylogenetic and
functional information which has been included in some versions of biodiversity
metrics (Chao et al., 2010; Rao, 1982; Scheiner, 2012). These indices have been
suggested to be more closely linked to functional diversity than species diversity itself
(Milcu et al., 2013). They may also be used to help ameliorate the difficulties in
applying the species concept to microbes, and indeed to any genetic data without a lot
of information about the inter vs intraspecific variation of that gene within the

taxonomic group (Kress et al., 2005; Nilsson et al., 2008; Schoch et al., 2012). If we are
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interested in the impact of biodiversity on ecosystem function it would seem logical to

measure functional or phylogenetic diversity rather than taxonomic diversity.

The above indices of biodiversity are all concerned with alpha diversity; that is the
diversity within a certain area. What may also be of interest is the beta diversity; or
how dissimilar two separate ecosystems are. The term beta diversity has been used in
many different ways to describe different phenomena (Tuomisto, 2010). “True beta
diversity” has been defined as the factor needed to multiply “true alpha diversity” by to
get the global (gamma) diversity. Here, true alpha diversity corresponds to the average
number of species within the sampling units (Tuomisto, 2010). However, what is more
often referred to by beta diversity is the degree to which two communities are

dissimilar, which can also be referred to as community overlap or dissimilarity.

Similar to the case for alpha diversity there are community overlap indices that take
into account only presence/absence data (qualitative) but also those which use
abundance data (quantitative) (Magurran, 2004). One of the most commonly used
qualitative indices is the Serensen index, which is widely regarded as one of the most
effective presence/absence similarity measures particularly for molecular data where
abundances are less clear (Magurran, 2004). If abundance data is available one of the
many quantitative community overlap indices can be used, such as the Bray-Curtis
index or the Morisita-Horn index (Wolda, 1981, 1983). There are numerous community
overlap indices, of which only the most commonly used are described here, and
compared in Box 2. The selection of the best index will depend upon the question of
interest, the dataset and the eventual goal of the analysis (Magurran, 2004). Clearly,
how to extract the useful information from biodiversity and other data is still a matter

of much debate and controversy.
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Box 1.2: A Comparison of Beta Diversity Indices:

0.89 0.2 0.84 0.94

Four sites are shown, each with 25 individuals represented by squares. The colour
of the square indicates the species, and the distance along the bar represents the
total proportion of the community that is made up of each species. Community
overlap values are given on the arrows connecting the sites, first (in red) is the
Serensen index, second (in blue) is the Marczewski-Steinhaus distance, third (in
green) is the Bray-Curtis index and finally in pink is the Morisita-Horn index. The
abundance based measures (BC and MH) pick out the site in the top right as being
particularly different from the others, whereas the qualitative measures do not.

True beta diversity of these sites is 1.50 at g=0, 1.16 at g=1 and 1.09 at g=2.
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1.3 Soils in Wales

Wales is varied in terrain and geological history, resulting in a wide variety of habitats
and soil types over a relatively small geographic area. Wales also contains a relatively
high proportion of high-carbon peatland soils, with 5.6% of the land area covered by
peatlands (Vanguelova et al., 2012). Many of these valuable habitats are being
degraded by agricultural use and forest plantations. In 2018 around 90% of Welsh
land was used for some type of agriculture, with the majority being used for pasture
and only 13% being used for arable production (Welsh Government, 2019a). Since
2008 there has been an expansion of the total area of Wales used for agriculture (78%
to 90%), although this is at least partly attributable to new registration of pre-existing
farmland for access to new government funding, and also the proportion that is used
for arable production (10% to 13%) (Welsh Government, 2019a). Land use across
Wales is expected to change further in the future as political uncertainty and the
impacts of climate change influence the relative sustainability of farming systems,

with associated impacts on the Welsh environment.

The climate of Wales is predicted to move towards having warmer, wetter winters
with hotter, drier summers (Figure 1.4, Murphy et al., 2018). There are already more
frequent and intense extreme events which are projected to increase further in the
future, with increasing frequency of drought and flooding across the UK including
Wales (Kendon, E. J. et al., 2014; Kendon, M. et al., 2019). This will have major impacts
on the types of agricultural and natural landscapes that can persist in Wales (ASC,
2016). The differing abilities of species to adapt and move in response to the new
climate conditions, in tandem with other anthropogenic pressures, will lead to
changes in the composition and stability of ecosystems (Morecroft & Speakman, 2015).
Coastal landscapes will also change, as increasing sea level and potentially increased
storm surge lead to increased flooding of coastal ecosystems (Palmer et al., 2018). All
of these predictions assume that the models based on current atmospheric and
oceanic dynamics are accurate to future dynamics, but there is potential for abrupt
climate change with shutdown of major ocean-atmosphere systems which would have

dramatic and difficult to predict impacts on the Welsh landscape (Rahmstorf et al.,
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2015). This ever increasing threat to Welsh ecosystems is occurring at a time of

increased land use pressure, pollution, and political uncertainty.
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Figure 1.4: Projected future change in summer (top) and winter (bottom) temperature (left) and precipitation
(right) for Wales under RCP8.5, the high emissions scenario, for 2040-2059 compared to 1981-2000.
Note the increasing temperature for both summer and winter, and the drier summers and wetter

winters. Source: UKCP18 website, Met Office © Crown Copyright.

Within the UK, agricultural and environmental policy is devolved to the Welsh and
Scottish Governments, with England and Northern Ireland both having their
agricultural and environmental policies determined by the UK Government. These
separate administrations have different policies and priorities, with overall
requirements under the EU Common Agricultural Policy. Uniquely within the UK
Welsh Government has recognised the importance of soil by adding soil carbon to
their national indicators of well-being alongside social and economic indicators
(Wellbeing of Future Generations Act (Wales) 2015). As the political landscape
changes within the UK due to Brexit the agri-environment schemes within Wales and
the other countries of the UK will change. Scoping of the post-Brexit agricultural
policy options is being undertaken by Welsh Government with open consultations
(Welsh Government, 2019b). Based upon the Welsh Government’s commitment to
sustainability within the Wellbeing of Future Generations Act the new agri-

environment scheme will be based around the principles of sustainability and
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sustainable land management. The details of this scheme are still far from decided but
it is clear the transition from current agri-environment schemes to the new scheme

will take many years.

In order to improve the Welsh environment and the countryside Welsh Government
launched the Glastir agri-environment scheme in 2012 (Rose, 2011). Glastir replaced
four existing agri-environment schemes in Wales - Tir Cynnal, Tir Gofal, Tir Mynydd,
and the Organic Farming Scheme - as well as the Better Woodland for Wales scheme.
Initially, the scheme was composed of five components: the All Wales element,
Targeted element, Common Land element, ACRES (the Agricultural Carbon
Reduction and Efficiency Scheme), and the stand-alone Woodland Creation scheme.
The All Wales element was open to all farmers across Wales and involved farmers
choosing from a range of options that promote environmental health. The Targeted
element was spatially targeted to certain areas of Wales that were identified as being
of concern relating to factors such as soil carbon, water quality, biodiversity, historic
environment and land access. The Common Land element was available to farmers
who hold rights to common land and where the Commoners’ Association agreed to all
graziers removing their stock during a winter closed period and managing sward
height throughout the year. The ACRES and Woodland Creation scheme was open to
farmers who invested in energy efficiency saving equipment and planting woodland
respectively. To evaluate the impact of Glastir the Glastir Monitoring and Evaluation
Programme (GMEP) was initiated (Emmett et al., 2014). GMEP combined monitoring
of the Welsh countryside over a four-year field survey with modelling approaches in
order to quantify the condition of the Welsh environment and the impacts of Glastir

(Emmett et al., 2017).

The GMEP field survey followed a similar design to the Countryside Survey, with 300 1
km squares surveyed once each across the four years with a variety of measurements
including plant surveys, freshwater measurements, pollinator transects, identification
of historical features, habitat mapping, and soil sampling. Unlike the Countryside
Survey, the square selection in GMEP was done under two separate criteria: (1) the

Wider Wales Component which surveyed land classes across Wales in proportion to
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their extent; and (2) the Targeted Component which preferentially included areas of

Wales that were of special interest to Welsh agri-environment policy.

Evaluating the impact of Glastir requires consideration of the factors influencing
scheme uptake and implementation. Glastir does not constitute a randomised
controlled trial, therefore as discussed above in section 1.2.2 in order to evaluate the
impact of Glastir interventions factors that causally influence both the uptake of
Glastir and the environmental property of interest need to be considered and
accounted for. Factors that are known to influence uptake of agri-environment
schemes include: previous experience of agri-environment schemes (Franzén et al.,
2016); the ease of integration of the scheme with the farmer’s planned farm
development and current resources (Ingram et al., 2013; Karali et al., 2014); the mental
health of the farmer (Hounsome et al., 2006); the belief framework held by the farmer
(Johansson et al., 2013); and consistently the financial implications of the scheme
(Franzén et al., 2016; Karali et al., 2014; Van Rensburg et al., 2009). Agri-environment
schemes also often have different options and which the farmers choose to engage in
could impact interpretation. Within the Glastir scheme a small number of
environmental interventions were disproportionately selected by farmers and access
to some types of payments was dependent upon previous engagement with agri-
environment schemes (Arnott et al., 2019). Many of these above factors can be
assumed to have no impact upon the environmental property of interest, however
others such as previous experience of agri-environment schemes may need to be

accounted for.

The structure of Glastir, with a targeted component involving certain areas being
included due to their environmental characteristics, makes it more likely that there
will be potential confounders upon the intervention - response relationship. Future
repetition of the field survey within the Environment & Rural Affairs Monitoring and
Modelling Programme (ERAMMP) aims to allow more confident attribution of the
impacts of Glastir by examining trends over time. While it may be difficult to judge
the impact of Glastir based upon GMEDP, the field survey offers opportunities to
evaluate the current state of the Welsh landscape. The combination of co-located soil

physicochemical, soil microbial, plant community and animal community data across
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the variety of Welsh land use offers powerful opportunities to examine ecological

processes.

1.4 Thesis aims and Objectives

This section details the aims and objectives of this thesis, followed by a brief
description of the relevant chapters and experimental work referring to each objective.
A list of the experimental chapter titles is presented in section 1.5. Individual

hypotheses and objectives are described in the each of the prepared manuscripts.

1.4.1 Thesis aims
The overall aims of this thesis are to explore the linkages between soil structure and

microbial communities across a range of Welsh soils.

1.4.2 Objective 1

To evaluate the state of soils in Wales in regard to their physicochemical properties

and biological communities.

In Chapter 2 the results from the soil physicochemical properties from GMEP are
presented with focus on the range of soil carbon, pH and nitrogen across Welsh
habitats. The soil textural characteristics across GMEP are presented initially in
Chapter 2, with extension in Chapter 3 with the application of the multifractal concept
for soil textural heterogeneity characterisation. Chapter 4 presents the range of soil
water repellency. The soil microbial community of GMEP is characterised in Appendix

A.

1.4.3 Objective 2
To establish the relative roles of different physicochemical and biological factors in

determining soil biodiversity.

The influence of soil heterogeneity upon soil microbial diversity is presented in
Chapter 3. The relationships between aboveground and belowground diversity, and

evaluation of multitrophic diversity, is presented in Chapter 5.
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1.4.4 Objective 3

To explore the associations between soil physical properties and biological

communities across Wales.

In Chapter 3, the relationship between soil textural characteristics and soil microbial
diversity within GMEP is analysed. The impact of soil microbial and plant community

properties upon soil water repellency is analysed and presented in Chapter 4.

1.4.5 Objective 4
To evaluate the impacts of climate change on soil microbial communities and the

potential knock-on effects on soil functions.

The impact of climate change on the soil microbial community is evaluated within a
long term warming and drought experiment on Welsh heathland in Chapter 6. The
impact of these changes upon function are explored in Appendix B where the changes
in respiration over the course of the above experiment are explored. The impact of
drought on soil function at the Welsh landscape level is explored within the analysis of

drivers of soil water repellency in Chapter 4.

1.5 Experimental chapter information

The experimental chapters of the current thesis have been prepared in the style of
journal article manuscripts. The title page of each experimental chapter includes
details of the authors, author contributions to the manuscript and the current
progress of each manuscript (e.g. published / accepted / submitted / not yet
submitted). The thesis consists of five experimental chapters, located in Chapters 2-6
of the current document. For continuity and clarity, the experimental chapters will be
referred to as they appear in this thesis. The titles of the experimental chapters are as

follows:
Chapter 2: Identifying soil functional classes from survey data at a national scale
Chapter 3: Soil textural heterogeneity impacts bacterial but not fungal diversity

Chapter 4: Plant and soil communities are associated with the response of soil

water repellency to environmental stress
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Chapter 5: A diversity of diversities: evaluating the relationships between below

and aboveground biodiversity

Chapter 6: Bacterial and fungal communities respond differently to realistic

climate change manipulations over time

Chapter 7: Synthesis and discussion
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Abstract

A major challenge in soil science is to monitor and understand the state and change of
soils at a national scale, to inform decision making and policy. To address this, there is
a need to identify key parameters for soil health and function, and determine how they
relate to other parameters and traditional soil surveys. Here we present a national
scale data set of topsoil sampled as part of a wider agri-environment monitoring
scheme in Wales, UK. Over 1350 topsoils (0-15 cm) were sampled across a very wide
range of habitats and a range of physical, chemical, and biological soil quality
indicators measured. We show consistent differences in soil physicochemical
properties across habitat types, with carbon decreasing and pH increasing across the
habitat productivity gradient from bogs through woodlands and grasslands to arable
systems. The soils within our dataset are largely within the limits identified as
important for supporting habitat function, with the exception of excessive plant
available phosphate (Olsen P) levels in mesotrophic grassland. Cluster detection
methods identified four soil functional classes based on measured topsoil properties,
which were more related to habitat type than the genesis-based soil classification from
soil maps. These soil functional classes can be interpreted as phenoforms within the
soil genoforms found by traditional soil classification. This shows the importance of
land use management in determining the soil health and functional capacity of soils.
Our work provides an accounting of the current state of soil health in Wales, their
relationship to soil function and a baseline for future monitoring to track changes

against agri-environment and other policy targets.
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2.1 Introduction

Soils underpin human existence through food, feed, fibre and timber production, as
well as through earth system functions that support the delivery of other ecosystem
services. Soil degradation affects 33% of all land globally according to the
Intergovernmental Technical Panel on Soils (FAO & ITPS, 2015), and ‘52 % of the land
used for agriculture is moderately or severely affected by soil degradation’ as reported
in Goal 15 of the U.N. sustainable development goals. In 2015, the first U.N. ITPS
proposed four urgent actions to tackle and reverse degradation. The fourth was the
development of robust soil monitoring systems to determine the current state and
trend of soil health. Soil monitoring has become increasingly important in recent
years, as nutrient loss, erosion, and land use change have implications not just for
agriculture but for human activities as a whole. Land use change impacts heavily upon
soil function (FAO & ITPS, 2015), making integrated surveys for both soils and land
management particularly opportune to understand the impacts on land use and
climate change. The measurements we report here provide both a baseline for the
continuing monitoring of soil health and directly align with previous monitoring

allowing greater power to detect anthropogenic impacts on soil health.

Traditionally, soil genesis and development studies have focused on processes
occurring on the centennial to millennial time scales (Walker & Syers, 1976). However,
there is an increasing recognition of the importance of sub-decadal changes in
response to land use change, pollution and climate drivers (Varallyay, 1990). This in
turn is leading to a greater recognition of the importance of soil change and
determining the speed of this change (Richter Jr & Markewitz, 2001; Tugel et al.,
2005) and perhaps more importantly its potential impact on earth system function
(Amundson et al., 2015; Schmidt et al., 2011). This shift in thinking has led to a
difficulty in integrating the traditional methods and results in soil science,
emphasising soil development and classification, with more recent needs for
measuring and interpreting change in soil function which recognises the more urgent
need for evidence and action. In addition to traditional pedogenic-based classification
(e.g. taxonomy), several approaches to bring together soil classification based upon

genesis trajectories and results based on soil functional properties have been

43



proposed. These include the FAO topsoil classification (Broll et al., 2006), soil
varieties within the Genetic Soil Classification of China (Shi et al., 2010), and the
genoform - phenoform concept (Droogers & Bouma, 1997; Rossiter & Bouma, 2018).
Under the latter, soil classifications are seen as genoforms, which are time-invariant at
human timescales (e.g. climate, long term organisms or land cover, relief & parent
material acting through time). Soils that are sufficiently different within a genoform to
substantially affect soil function and be persistent over time are classed as phenoforms
(e.g. managed properties known to be important in soil function such as pH, and
organic carbon). Genoforms act as fundamental controls on soil phenoforms and their
function that can develop. This enables linkages between soil maps and function to be

clearly expressed.

Soil functions are inherent capabilities of the soil that include biomass and food
production, maintaining soil biodiversity, carbon and nutrient sequestration, water
filtration and transformation, landscape and heritage, and a source of raw materials
(Blum, 2005). In order to track changes in soil functions, functional properties must
be defined, which for monitoring at the national scale are required to be scalable to
large areas and representative of functions across a variety of landscapes (Biinemann
et al., 2018). This set of functional properties together represent a way to assess soil
health. Here we define soil functional properties as those which can be managed in a
habitat-specific manner and are associated with the above functions. Therefore, we
include carbon, pH, bulk density, nitrogen, phosphorus and water repellency (Van
Alphen & Stoorvogel, 2000). Soil carbon, pH, water content and bulk density are the
most commonly proposed indicators for soil function due to their impacts on a wide
range of soil functions (Biinemann et al., 2018). Bulk density, soil texture and
associated water related properties have been considered to be key indicators for
monitoring of physical soil health (Corstanje et al., 2017). Soil carbon and nitrogen are
key determinants of various soil functions, including greenhouse gas emissions,
biomass production and influencing biological communities but their exact impacts
are often hard to evaluate (Gardenads et al., 2011). Other soil properties that have been
found to be important in determining soil functions may be system-dependent; for

example, electrical conductivity and salinity are highly influential on soil functions

44



when at high levels more common in arid or intense arable systems but are less

important in other soil systems.

Wales, the location of our study, has recognised the role of soil in supporting wider
ecosystem functions by inclusion of soil carbon as a key sustainability indicator within
domestic legislation (Well-being of Future Generations (Wales) Act 2015). As
awareness of the role of soils in supporting key ecosystem functions has increased,
programs to monitor and promote soil management have been put in place in various
countries (e.g. Orgiazzi et al., 2018), and in Wales this is integrated within the Glastir
land management scheme (Rose, 2011). In order to achieve these aims, current soils
data is required to monitor changes in soil functions in response to wider ecosystem
change and their downstream effects. Data on soil properties that underlie health and
function needs to be collected using methods which are transferrable across the range
of soils within Wales but also the UK, Europe and globally, so comparisons can be
made at large scales (Ribeiro et al., 2015). Frequency of data collection needs to be
sufficient to detect changes within a politically relevant time period to allow for
adaptive change of current policies as well as slower changes. The Glastir Monitoring
and Evaluation Programme (GMEP) scheme meets these criteria in that it collects data
on soil as part of an integrated monitoring programme covering vegetation, soil and
water properties using a robust soil sampling methodology which has been used
successfully across the variety of soils in Wales (Emmett et al., 2014). GMEP uses a
methodology used in previous surveys in 1978, 1998 and 2007 to also allow for links to
historical datasets. The GMEP soil measurements seek to address the need for data to

understand soil state and change at a national scale to inform policy.

Two approaches are commonly used to monitor long-term changes in soil properties:
(i) localised monitoring of change in response to modifications of soil treatment often
in the form of field-scale manipulation experiments (Jenkinson & Rayner, 1977), and
(ii) large-scale “soil quality” surveys designed to inform land use and policy (Téth et
al., 2013). Our approach is unique and differs from these in that national soil change,
and change in areas subject to management interventions, are both measured through
the same survey design. This enables the evaluation of land management interventions

for policy goals. The survey design is based on a stratified random approach developed
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for a GB-wide integrated monitoring programme - the UK CEH Countryside Survey
(Carey et al., 2008); an example map of site selection is shown in Figure 2.1. The soil
monitoring programme also includes measurements not reported here relating to
factors not routinely measured in large-scale soil surveys, such as a holistic evaluation
of soil biodiversity (George et al., 2019). In addition, the survey allows for direct
comparison between soil properties and above-ground factors such as land use change
and plant species composition as well as streamwater quality, due to the soil and
above-ground surveys being co-located and adjacent streams and ponds being
sampled. Here we present results from the first iteration of this monitoring
programme, a survey of topsoil (0-15 cm) health across Wales. We use this data to
identify clusters of soils with similar topsoil properties and compare these classes with

previously mapped soil groups. Our objectives are:

1. To present the topsoil results of a sub-decadal rolling agri-environment

monitoring program by habitat type

2. To determine if pH, Olsen phosphorus (Olsen P) and bulk density values are

within the nationally determined thresholds for habitat support
3. To evaluate the relationships between topsoil functional properties

4. To classify soils based on topsoil properties and compare these classes to land

use and traditional soil classification methods

2.2 Methods

2.2.1 Field measurement programme

Topsoil measurements were conducted through a 4 year field survey of 300 1-km
squares across Wales (Figure 2.1), half of which are focused on areas prioritised by the
Glastir agri-environment scheme to determine the impact of land management
interventions. The 1-km squares were selected at random from 26 land classes in
proportion to their extent following the methodology of the UK CEH Countryside
Survey (Carey et al., 2008; Reynolds et al., 2013), ensuring good coverage of the Welsh

landscape. The initial survey took place over the summers of 2013 to 2016, and it is
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these results we present here. Each year, ~75 squares were monitored with each square
having 5 soil sampling sites, each randomly located within a segment of the square.
The soil sampling locations are centrally located within a 200 m? square quadrat that
has a corresponding vegetation survey and habitat assigned by the surveyors according
to the UK Biodiversity Action Plan broad habitat classification (Jackson, 2000). The
soil cores for physicochemical analysis were taken with a corer of 5 cm diameter down
to 15 cm depth after removal of vegetation and any loose litter. The major soil group
for each site was taken from the UK National Soil Map of England and Wales (Proctor
et al., 1998).

Figure 2.1: Map of Wales and the locations of the 300 individual survey squares. Locations are randomly shifted

to any point on land within 10 km of the original location to ensure data confidentiality.

Sites were selected by a random stratified sampling method, with half the squares
being selected to provide a representative sample of the major land classes in Wales
whilst the remaining half weighted towards habitats of particular interest for farmer
payments within the Glastir scheme. For the latter, each 1 km square across Wales had

probability of being selected proportional to the score assigned to it under the Glastir
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Advanced scheme by the Welsh Government. Models were used to estimate expected
future Glastir scheme outcomes so that adjustments can be made to match Welsh
Government priorities (climate change mitigation and water resources in years one &
two), and scheme impact can be maximised. The national monitoring program in
Wales has evolved from the Countryside Survey soil sampling approach and
methodology (Emmett et al., 2008). In total there are: 20 supra-littoral sediment sites;
39 arable sites; 388 improved grassland sites; 300 neutral grassland sites; 205 acid
grassland sites; 79 broadleaf sites; 84 conifer sites; 86 heathland sites; 41 bracken sites;
53 fen and other sites; and 92 bog sites. Improved grassland is composed of fast-
growing grasses typically managed as pasture or for silage production with the
addition of fertiliser and/or lime. Neutral grasslands are usually found on soils with
pH 4.5 to 6.5 and lack plants with strong preference for base-rich or acid soils. Acid
grassland is characterised by plants with strong preference for acidic soils. Of the 1387
sites, 1353 had complete measurements for pH, carbon, nitrogen, total phosphorus,

and bulk density.

2.2.2 Laboratory methods

The analysis of soil variables was performed using the methods employed in the
Countryside Survey (Emmett et al., 2008). In addition, soil surface water repellency
was measured using the water drop penetration time method as described in Seaton et
al. (2019). Details of the methodology are presented within the supporting
information, and the full dataset is available from the Environmental Information

Data Centre (EIDC) (Appendix I, Robinson et al., 2019).

2.2.3 Statistics

The differences in soil physicochemical properties by habitat were examined by
providing summary statistics by habitat, counts of number of sites outside nationally
determined threshold levels per habitat type and plotting using the ggplot2 and egg
packages (Auguie, 2019; Wickham, 2016). The relationships between the different soil
properties were examined using Spearman rank correlations. Classification of the soils
was undertaken using cluster analysis upon the soil properties considered to affect soil
functions, including pH, bulk density, carbon concentration, water content, soil

surface water repellency, and total nitrogen. Soil properties such as total phosphorus,
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Olsen P and electrical conductivity are considered to affect soil function but had such
low variation in our dataset that they were not included in this analysis. Soil water
repellency was logio-transformed before inclusion. The clusters were fit using
hierarchical clustering with Ward’s criterion and four clusters were selected as the
most appropriate divide based on the hierarchical tree (Murtagh & Legendre, 2011).
The correlation of the clusters with the habitat groups was calculated using the x? test
and the strength of the correlation presented using Cramer’s V statistic. All statistical

analyses and graphing was performed in R version 3.6.1 (R Core Team, 2019).

49



2.3 Results

2.3.1 Soil properties across habitat types
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Figure 2.2. Differences in soil pH (a), soil carbon concentration (b) and C:N ratio (c) across the range of habitats
found in our study across Wales. Habitats are coloured by which aggregated habitat group they belong
to and arranged in decreasing plant productivity order. The line bisecting each box represents the
median value, with the box extending to the first and third quartiles of the data. The whiskers extend to

the furthest values no more than 1.5 times the inter-quartile range. Outliers are plotted individually.
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Topsoil pH, carbon and nitrogen concentration vary across the different habitats
found in Wales (Figure 2.2). Arable, improved grassland and neutral grassland tend to
have the highest pH, lowest organic carbon concentration and lowest carbon to
nitrogen (C:N) ratio of the habitat types. The majority of all other habitat types have
acidic soils (Figure 2.2A), with fen habitats having a slightly higher pH than the other
habitats. Bog is an important carbon store, with a median loss-on-ignition (LOI)
carbon concentration of ~490 g carbon kg (carbon stock ~6 kg carbon m), with acid
grassland, coniferous woodland, heathland and fen having large ranges in carbon
concentration and some sites having around 500 g carbon kg?! (carbon stock >15 kg
carbon m™) (Figure 2.2B). C:N ratios are generally high across the different habitats,
particularly in the high carbon habitats (Figure 2.2). Topsoil total nitrogen follows a
similar variation across habitats to soil carbon, although total phosphorus and Olsen P
show limited variation with habitat (Appendix D Figure 1). Bulk density varies
considerably across habitat types, being highest in arable followed by improved and
neutral grasslands and lowest in bogs (Appendix D Figure 2). Rock volume of soil and
electrical conductivity show limited variation across habitat types (Appendix D Figure

2).

The broad habitats identified by the surveyors were aggregated into four habitat
groups: improved land, neutral land, upland, and woodland for ease of interpretation.
The range of organic carbon concentration, pH, nitrogen, phosphorus and Olsen P for
the habitat groups are presented in Table 2.1. We do not present results for Olsen P in
upland or woodland sites due to its methodological unreliability within low pH soils

(Emmett et al., 2010).
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Table 2.1: Topsoil chemical properties: means + SD, median, min and max, carbon concentration estimated

from Loss-On-Ignition (LOI). Phosphorus measured as total phosphorus, Olsen-P results are only

presented for improved land and neutral grassland.

HABITAT
GROUPS INDICATOR UNIT MEAN MEDIAN MIN MAX
IMPROVED LAND | LOI Carbon g/kg dry 53.8+ 51.3 13.2 300
N=419 soil 25.1
Carbon g/kg dry 50.1+ 46.1 5.50 313
concentration soil 27.7
pH Unitless 583+ 5.75 4.44 7.97
0.54
Nitrogen g/100gdry 0.45% 0.45 0.02 1.77
soil 0.18
Phosphorus (total P)  g/kg dry 113.7 112.1 9.6 398.2
soil 50.9
Olsen-P g/kg dry 25.1+ 19.6 2.22 104
soil 17.4
NEUTRAL LOI Carbon g/kg dry 65.3 + 55.2 16.6 370
GRASSLAND soil 41.7
N=300 Carbon g/kg dry 61.8+ 49.6 13.3 370
concentration soil 43.0
pH Unitless 5.69 £ 5.67 4.22 7.76
0.50
Nitrogen g/100gdry 0.52+ 0.47 0.11 2.31
soil 0.28
Phosphorus (total P)  g/kg dry 100.6 £ 96.1 16.7 397.0
soil 49.7
Olsen-P g/kg dry 17.2 ¢ 12.1 1.11 105
soil 15.1
UPLAND GRASS LOI Carbon g/kg dry 268 + 219 29.6 544
AND HEATHLAND soil 181
N=467 Carbon g/kg dry 262 + 217 24.9 545
concentration soil 1780
pH Unitless 466 458 2.95 7.78
0.64
Nitrogen g/100gdry 1.35% 1.27 0.16 3.31
soil 0.78
Phosphorus (total P) g/kg dry 100.0 £ 92.6 11.5 317.2
soil 45.6
WOODLAND LOI Carbon g/kg dry 179+166 101 15.0 534
N=162 soil
Carbon g/kg dry 173+163 95.0 10.0 530
concentration soil
pH Unitless 463+ 4.46 3.40 7.97
0.77
Nitrogen g/100gdry 0.86% 0.58 0.10 2.66
soil 0.67
Phosphorus (total P) g/kg dry 80.0+42.6 72.6 3.0 237.1

soil
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Figure 2.3: The clay, silt and sand percentages of a subset of the soils (n=781) plotted on a ternary diagram.

The soils were generally highest in silt-sized and sand-sized particles (Figure 2.3), with
the majority being silty clay loam (n=284) or clay loam (n=232). There were also 145
sandy silty loams, 69 sandy loams, 19 silty clays, 15 silty loams, 6 loamy sand, 6 sands,
4 clays and 1 sandy clay loam. As the soil texture method involves organic matter
removal prior to measurement it was only carried out on samples with lower loss-on-

ignition (LOI < 50%), so the carbon-rich soils are not included in these statistics.

2.3.2 Thresholds

The majority of our sites are within the pH limits used as a national guideline for
representing good support for the ecological habitat and biodiversity within specific
habitat types (Bhogal et al., 2008). We compare this to our new analysis of the
Countryside Survey topsoil data which compared the Welsh sites to the same
thresholds (Appendix D Table 1, Reynolds et al., 2013). Within the sites with
mesotrophic grassland plant communities, i.e. improved and neutral grasslands, there
are only 6% of sites which are outside the recommended pH range of 5-7 (Table 2.2).

Two thirds of these 39 sites are deemed too acidic. This is considerably fewer
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mesotrophic grassland sites than have been identified as being too acidic in Wales in
previous surveys such as the Countryside Survey (Appendix D Table 1). However, in
sites with acid grassland plant communities 26% of our sites have pH above 5, which
is considered to reduce their ability to support their distinct ecological communities
(Bhogal et al., 2008). The previous Countryside Survey sites located in Wales found
that the proportion of acid grasslands with pH above 5 increased over time from 1978
through 1998 to 2007 (Appendix D Table 1). Countryside Survey soils in 2007 showed
that 24% of acid grasslands had pH above 5, which is comparable to our result. A
negligible proportion of our sites had bulk density above the identified threshold,
however the reliability of this threshold of bulk density as an indicator of soil status
has yet to be fully tested due to a lack of data (Bhogal et al., 2008). Within
mesotrophic grassland Olsen-P was higher than the threshold for habitat support in
three quarters of the sites, which is similar to previous surveys (Table 2.2, Appendix D

Table 1).

Table 2.2: Number of sites above the UK national guidelines set by the Environment Agency. For Olsen-P this is
10 mg/L for mesotrophic grassland, no results are presented for acid grassland and heathland. For pH
this is <5 and >7 for mesotrophic grassland, >5 for acid grassland and heathland. For bulk density this is

above 1.3 g/cm? for mesotrophic grassland and 1.0 - 1.3 g/cm? for acid grassland and heath.

Habitat Olsen-P pH Bulk density
Mesotrophic 510 sites (75.3%) 39 sites (5.7%) 8 sites (1.2%)
grassland

Acid grassland - 51 (25.6%) 3 (1.5%)
Dwarf shrub heath - 4 (4.7%) 0 (0%)

2.3.3 Relationships between soil variables
Soils across Wales show that soil organic carbon concentration, bulk density and total
nitrogen are highly correlated with each other. The relationship between organic

carbon concentration and bulk density follows the distinctive curved shape found in
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previous studies of UK soils (Figure 2.4a) (Emmett et al., 2010; Howard et al., 1995).
Total nitrogen follows a positive linear relationship with LOI carbon at low
concentrations of carbon with a gradual levelling off and increasing variance at high
carbon concentrations (R? = 0.87, Figure 2.4e). High LOI carbon content soils are

found solely in conjunction with low pH (Figure 2.4c¢).
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Figure 2.4. The major soil parameters plotted against each other and coloured by habitat group (n = 1367,

1363, 1367, 1362, 1364 for panels a to e respectively).
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Plotting the spearman correlations as a network shows the strong inner cluster of
inter-correlated total carbon, bulk density and nitrogen that change in tandem across
our sites (correlations ~ +0.9, Figure 2.5). Highly correlated with these three are pH,
water content and soil water repellency. The rock content of the soil, electrical
conductivity and total phosphorus are poorly correlated with the other soil parameters
and situated on the edge of the diagram. For the exact correlation values see Appendix

D Table 2.

O
)

Figure 2.5. The Spearman’s rank correlations between the variables plotted as a network. Each circle (node) is a
variable, and the lines between circles represent the correlation between those two variables across the
entire network. The width of the line is proportional to the strength of the correlation and the lines are
coloured with blue for positive correlations and red for negative correlations. The layout of the network
is selected by an algorithm that attempts to put strongly related variables closer together. The node
labels correspond to BD = bulk density (log), C = total carbon concentration, EC = electrical conductivity
(log), N = total nitrogen, P = total phosphorus, pH = pH, POI = Olsen-P, Rck = rock volume in soil, SWR =

soil water repellency (log), Wtr = volumetric water content.
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2.3.4 Alternative soil classifications

Using the key soil parameters identified in the previous section (total carbon
concentration, total nitrogen, bulk density, pH, water content and water repellency)
we placed our soils into different categories. The cluster dendrogram from the k-
means method of clustering usefully organised the hierarchical patterns of similarity
in the dataset. This allowed the most ecologically informative clusters to be identified,
striking a compromise between too few with too much internal variance versus too
many similar groups, resulting in four approximately equally sized categories (Figure
2.6). We plotted these soil categories against the properties used to create these
clusters and named the categories as: organic; organo-mineral; acid mineral; and

neutral mineral soils (Appendix D Figure 3, Appendix D Table 3).
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Figure 2.6. The results of the classification algorithm in dendrogram form. The tree diagram is truncated to
remove individual data points. The groups identified by visual inspection are surrounded by coloured
boxes, with the colours corresponding to the colours used in Figure 7. From left to right: group 1 (308
members, orange: improved grassland), group 2 (280 members, green: woodland), group 3 (350

members, pink: neutral grassland) and group 4 (437 members, blue: upland).

57



The classification of soils into our categories showed a stronger relationship with the
aboveground habitat than the major soil group within the mapped classification by
genesis did (Figure 2.7). Both soil classification systems were significantly associated
with the aggregated habitat group (x? test, p < 0.001), however the relationship
between the soil topsoil properties classification and habitat was stronger than the
relationship between the soil genesis classification and habitat (Cramer’s V were 0.455
and 0.301 respectively). The results for broad habitat were also significant and showed
the same pattern of strength. The topsoil properties classification strongly separated
out the bog which was found only on the organic class and the arable which was found
almost solely on neutral mineral soils. All other habitats showed a definite trend with
the topsoil properties classification. Improved and neutral habitats were more likely to
be associated with acid and neutral mineral soils, or brown soils in the case of the
mapped soil classes. There are differences in the proportions of topsoil properties
clusters per each mapped soil unit (x2 test, p < 0.001, Cramer’s V = 0.356), but every
mapped classification had at least one example of every topsoil functional cluster with
limited differences in proportions across the three most numerous mapped soil classes

(Appendix D Figure 4).
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Figure 2.7: The different habitats distributed across the different soil classification types, classification by

genesis (a) and topsoil properties (b).

2.4 Discussion

2.4.1 Key soil parameters status and correlations

The range and distribution of soil physicochemical properties found within this survey
are in agreement with previous national scale surveys of UK soils (Baxter et al., 2006;
Bellamy et al., 2005; Reynolds et al., 2013). The trend in carbon and pH with habitat
showed that arable and improved grassland habitats had the lowest carbon
concentration and acidity, with these increasing in the lower productivity habitats
such as bogs and heathland. Wales contains many carbon-rich, low pH soils which are
not always included in other surveys due to their focus on soils of high agricultural
production (e.g. Baxter et al., 2006). However the improved lands included within our
survey had pH levels consistent with previous studies of agricultural lands within
Wales (Baxter et al., 2006; Reynolds et al., 2013). Compared to the rest of Europe

Welsh soils have on average higher carbon concentration and lower pH, this is also
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true when only comparing them with the soils from the Atlantic climatic region (Téth
et al., 2013). This may be related to the general dominance of an acid geology, and the
high precipitation, as globally there is lower pH in areas with greater precipitation
which is thought to be linked to acidity and slower decomposition, thus enabling a
build-up of soil organic matter (Slessarev et al., 2016). Our soil texture results also
support evidence from the National Soil Survey that Wales is lacking in finer-grained,
clay mineral, soils compared to the rest of the Atlantic region of Europe (Téth et al.,
2013). All of these properties will contribute to the generally low productivity of many

Welsh soils and infrequent presence of arable farming systems.

The relationships between the different soil physicochemical variables are consistent
with those found previously in the UK Countryside Survey, especially the strong
correlation between carbon concentration and pH and other variables such as total
nitrogen and bulk density (Reynolds et al., 2013). The distinctive curved negative
association of carbon concentration with bulk density has been found by many studies
across a variety of climatic zones (Emmett et al., 2010; Howard et al., 1995; Périé &
Ouimet, 2011). There was limited correlation of total phosphorus, Olsen-P phosphate
or electrical conductivity with the other variables in our dataset which suggests
phosphorus supply is not primarily linked to organic matter formation but rather the
composition of the soil parent material and potentially in some cases the external

supply of phosphorus from fertilisers.

The comparison of our soils to nationally set thresholds enable us to increase our
understanding of soil health across Wales in a domain-specific manner. Some
thresholds are relatively well established, such as those for pH and Olsen-P which
have been identified for different environmental interactions and habitat support
(Bhogal et al., 2008). Other indicators have been proposed, such as bulk density, soil
carbon and C:N ratio but often there is limited evidence and/or consistency across
ecosystems in the impact of these (Bhogal et al., 2008). Bulk density, together with
clay content, has been proposed as a soil quality indicator for British soils in relation
to trends over time rather than passing a pre-identified threshold (Corstanje et al.,
2017). We have limited sites at the higher levels of bulk density which makes it

difficult to evaluate the threshold value and overall there was little correlation
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between bulk density and soil biological indicators such as total mesofauna (George et
al., 2017). Bulk density within our data strongly correlated with soil carbon, which may
suggest that in these types of soil systems bulk density and carbon represent the same
aspects of soil health. Instead of a single threshold, it has been suggested that evidence
of decreasing soil carbon acts as a trigger value, in particular due to its relevance to
carbon storage and biogeochemical cycling. The continuation of this survey in the
coming years will allow clear identification of any habitats that may be losing carbon
and thus should be targeted for land management interventions. Past surveys for
Wales using the same methodology and some common locations in Countryside
Survey did not identify any consistent trends in carbon concentration or density
between 1978, 1998 and 2007 (Reynolds et al., 2013). Other survey and modelling
approaches have suggested soils for the UK are on average losing carbon (Bellamy et
al., 2005; Jenkinson et al., 1991; Jones et al., 2005), or are remaining stable (Reynolds
et al., 2013; Smith et al., 2005). However, trends appear to be highly specific to land
use types e.g. soil carbon loss in arable soils and but gains in woodland soils (Reynolds
et al. 2013) and thus country-level trends perhaps mask important trends linked to
specific management practices within land use type. It is important to note also that
this survey does not measure changes in subsoil carbon, which is critical for carbon
storage and likely to be less influenced by land use than topsoil carbon, limiting the
inferences that can be made about the overall soil carbon stock and changes (Harrison

et al.,, 2011; Simo et al., 2019).

We have found three quarters of our mesotrophic grassland sites with Olsen-P above
the trigger value related to habitat support, which is similar to the 60 % and 90% of
mesotrophic sites we found to be above the trigger value in the Countryside Survey in
2007 and 1998 respectively. Globally, phosphate decreases in grasslands have been
predicted from model data (Sattari et al., 2016), and have been previously reported in
Wales from Countryside Survey data (DeLuca et al., 2015; Reynolds et al., 2013). This is
linked to the 60% reduction in use of P fertilisers in the UK from the 1980s to 2010
which has since stabilised (The British Survey of Fertiliser Practice, 2019), which could
be expected to impact across the landscape even on unimproved land due to reduced

transfer of phosphate by hydrological or atmospheric pathways. Reduced grazing
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could be reducing the removal of phosphate by preferential grazing on phosphorus
enriched areas and thus reducing its diversion away from grazing sites (Schiitz et al.,
2006; Statistics for Wales, 2016). High levels of phosphate have been linked to lower
plant diversity (Critchley et al., 2002; Michalcova et al., 2011). Moreover, elevated
phosphate levels can persist in the soil for long periods, and have lasting impact on the

plant communities that can establish at a site (Horrocks et al., 2016).

The current proportion of sites that are outside the pH thresholds are comparable to
the most recent surveys of the Welsh countryside by Countryside Survey in 2007,
which is markedly less acidic than surveys within 1978 and 1998 (Reynolds et al.,
2013). This can be interpreted as stabilisation rather than continued recovery from
historic acidification due to atmospheric acid deposition. This does not necessarily
mean that Welsh soils are fully recovered from acidification, as there are some
indications from model data that recovery from acidification is not yet complete
(RoTAP, 2012). The stalling of recovery from acidification could indicate that the soils
have entered into a lower pH stable state (Suding et al., 2004), thus to enhance
productivity some soils may require active remediation to return to pre-acidification
pH. Similar results showing reductions in recovery from acidification are reported for
woodland and other organic soils (Evans et al., 2008; Kirk et al., 2010; Reynolds et al.,
2013), attributed to vegetation uptake of base cations, nitrogen deposition or capture
of acidic pollutants by woodland canopy which offsets SOz reductions. This does
however raise the issue as to whether the assumption that a pH of less than 5 is
required for habitat support in acid grassland and dwarf shrub heath will hold, as the
impacts of anthropogenic acidification are reduced and soil pH values increase across
the UK. The shifting baseline in soil pH may be altering our perception of what
constitutes a good pH value for an acid grassland (Soga & Gaston, 2018). The
thresholds for pH were established based largely on data from UK grasslands in the
1990s (Bhogal et al., 2008), which would represent sites that are in the process of
recovery from intense acidification and therefore may not actually be similar to a true
natural state. The pH trigger values for supporting metal retention and microbial
function are actually contradictory with that suggested for supporting acid grassland

and heathland habitats (<5 and >5 respectively), and recent results indicate microbial
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function may decrease below pH 5.5 rather than 5 exacerbating this difference (Jones
et al., 2019). This shows the difficulties in designating appropriate boundaries when
multiple functions and services are involved, especially when the different functions
show differing responsiveness to change (Bhogal et al., 2008; Biinemann et al., 2018;

Jarvis et al., 2019).

2.4.2 Soil classification

The soil physicochemical clusters identified in this work have strong similarities with
previous analysis of UK soils. Analysis of the soils collected as part of the Countryside
Survey of the UK in 2007 found that there were three main clusters of soil
physicochemical properties corresponding to mineral soils, organo-mineral soils and
organic soils (Simfukwe et al., 2010). In our data we split the mineral soils into two
groups, however in other respects our classifications are similar. These results support
the use of soil organic material in categorising soils, as evidenced by the use of carbon

classifications within multiple classification systems (Broll et al., 2006; Emmett et al.,

2010).

Our analysis has shown that as we hypothesised the traditional soil classification
methods, such as that used within the UK soil classification (Avery, 1980), are weakly
correlated with differences in habitat type and land use while those based on key
topsoil manageable parameters are more strongly related. This is consistent with
previous results showing that soil dissolved organic carbon is not well related to soil
type in UK soils (Simfukwe et al., 2011). We have also found that there seems to be
only limited relationship between our identified topsoil class and the traditional
classification, with the exception of peat soils. This suggests that there may be limited
constraints from the soil genesis type upon the functional nature of the topsoil,
indicating the importance of management decisions in determining soil function. The
functional capacity of the subsoil, however, may be more constrained by the soil
genesis type than land cover. Therefore soil functions which are dominated by
different soil horizons may have influenced more or less strongly by the plant

community versus the soil genesis type. One key limitation of this analysis is that the
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soil classification by genesis was taken from a map based largely on data collected
from 1960-1970 and which fails to capture changes in soil management and land use
that have occurred since then. In addition, our survey locations were classified at the
soil association rather than series level. Soil surveying to classify soil genesis is time
consuming and labour intensive, often making funding of large-scale soil surveys
unattractive. In practice, many key survey and modelling results are either based on
previous soil mapping efforts or topsoil sampling only, which is what we have
compared here to land cover. Many ecosystem service maps use the soil classification
maps, when actually soil function is more related to the plant communities and land

cover type.

The soil properties we have presented here are a selection of properties that are known
to influence soil function and are both manageable and measurable at a national level.
The soil properties that are often measured in the scientific literature to represent
function, e.g. carbon mineralisation rates (Simfukwe et al., 2011), are usually difficult
to scale up to large areas due to factors such as expense and limited generality across
landscapes (Sanchez et al., 2003). Many of these properties can also be only measured
in a laboratory environment on highly processed soils which means that they can fail
to capture the conditions as they really exist, particularly the influence of plants in
regulating soil functioning (Carlyle et al., 1998; Oburger & Jones, 2009). Different
functions can also respond differently to the soil properties considered here and even
soil biodiversity can be represented by different aspects with different responses. For
example, in our sites microbial diversity is highest in our habitats with high pH and
low carbon (George et al., 2019) while mesofaunal abundance is highest in habitats
with more intermediate pH and carbon (George et al., 2017). However, some
properties such as soil carbon have been widely accepted to be indicators of soil
function, influencing greenhouse gas emission, nutrient cycling, water filtration and
biomass production among others (Amundson et al., 2015; Biinemann et al., 2018;
Environment Audit Committee, 2016; Rossiter & Bouma, 2018). It is these parameters
- pH, carbon, nitrogen, bulk density and water - that we have found to be pivotal in
determining the topsoil property classes of our Welsh soils and therefore why we term

these functional clusters.
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The clusters we have found behave differently in their functional attributes reflecting
their different land management regimes. The key functional attributes of soil vary
depending upon their pedogenic characteristics and the overlying land use. We see
the classes proposed by our analysis as a way of reducing complexity to enable
comparison of like-for-like, and consequently, we do not apply the principles of
functionality derived from lowland arable soils to upland peatlands. This comparison
of appropriate classifications is particularly relevant for determining policy at the
national scale, when balancing the need for provision of multiple functions across a
heterogeneous landscape. There is no way to tell within our data whether differences
in areas targeted for agri-environment interventions are due to the scheme or pre-
existing conditions and thus, we have not evaluated that here. However, the dataset
presented here offers an understanding of the current state of soil health in Wales that
can be used as a baseline for future surveying to evaluate the response of soil health
and function to land management interventions. The differences in soil health and
function across habitats we have found show the importance of land management to

soil function.

There have been objections to the principle of classifying soils into strictly defined
categories since the advent of soil classification systems (Webster, 1968). In response,
many authors have chosen to use fuzzy mathematical methods to classify soils
(Burrough, 1989; Mazaheri et al., 1995; Stevenson et al., 2015). This can allow any
given soil to belong to more than one class, potentially better capturing the range of
soils between different classes than the artificially abrupt boundaries between classes
in a hierarchical classification system. Soils generally exist on a continuum in trait
space, exhibiting different characteristics across a variety of landscapes. They can also
change over time and under different management practices; particularly those
already at the edge of the categorisation boundaries. Results such as ours which find
certain categories of soils based on their properties should be interpreted within this
context. Whilst categorisation is a useful tool for informing management and

monitoring, it cannot represent the full breadth and flexibility of soil types.

The clusters of soils we have identified can be aligned to the phenoform concept,

where the phenoforms are the functional clusters which can be nested within the
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genoforms, i.e. the mapped soil classes by genesis. However, we have found that the
genoform poses no major constraint upon the types of phenoform that can develop
there, which suggests the nested nature of the genoform-phenoform concept may be
an unnecessary complication in practice at least with respect to topsoil. One issue
with the comparison of our results to the genoform-phenoform concept is that the
phenoform definition considers only soil properties that are persistent and require
substantial management change to alter (Rossiter & Bouma, 2018). The properties
often identified as being key to functional classification, such as carbon and pH, are
experiencing ongoing change and are the target of key initiatives such as the 4 per
mille initiative which aims to increase global soil organic matter stocks by 0.4% per
year (Minasny et al., 2017). There is a conflict in the application of the phenoform
concept that hinges on the identification of what constitutes “substantial”
management. This conflict reaches its peak when considering changes over time. If we
were now to find that the 4 per mille initiative was successful then this would
constitute enough change to alter the phenoform of all of our soils. But if all change in
tandem, as occurred with the recovery from acidification in UK soils (Reynolds et al.,
2013), then new attempts to define phenoforms on the basis of cluster analysis of soil
properties will not show these changes and find the same phenoforms again. It may be
unlikely that different areas will respond in tandem to external changes due to
differences in the application of these changes, the inherent differences in
responsiveness of different habitats, and the non-linearities of change directions as
indicated in the fundamental different direction of soil carbon losses within different
land use types reported by Reynolds et al. (2013). However, the direction and
magnitude of change within soils is a key constraint on the application of the
phenoform concept that requires further investigation. The value of repeated soil
monitoring in establishing any trends in health and presence of phenoforms cannot be

overstated, as soil health is dynamic at management relevant timescales.

2.5 Conclusions

We present a national dataset which provides a baseline for the survey of Welsh
topsoils (0-15 cm), allowing for the quantification of the current health of the soil and

enabling future surveys to track trends in these conditions. We show that there are
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consistent differences in soil properties across habitats. Few of our soils are outside
established thresholds of pH and bulk density for ecosystem health, but high levels of
phosphate in improved grasslands remain an issue. Several key soil properties, such as
carbon, nitrogen and pH, are strongly correlated across our soils and can be used to
create a classification of the soils. We propose that our conceptual classification of the
topsoil is related to soil functionality, due to the known relationships between the key
soil properties featured here and soil functions. Consequently, the functional
classification of the topsoil developed in the present analysis is more related to land

use type than soil classes based on traditional methods.
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Abstract

Soils harbour high levels of microbial diversity, underpinning their ability to provide
key soil functions and ecosystem services. The extreme variety of soil microbial life is
often explained by reference to the physical and chemical heterogeneity of the soil
environment. However, detailed understanding of this link is still lacking, particularly
as micro-scale studies are difficult to scale up to the soil profile or landscape level. To
address this, we used soil samples collected from a wide range of temperate oceanic
habitats (e.g. arable, grassland, coniferous and deciduous woodland, heathland; 335
sites in total) to evaluate the link between soil texture and microbial diversity. Soil
particle size distribution was measured in each sample using laser granulometry (i.e.
sand, silt, clay), while the diversity of bacterial and fungal communities were
determined by sequencing 16S and ITS] taxonomy marker gene regions respectively
using an [llumina MiSeq. Multifractal analysis of the soil particle size distribution was
then used to describe the heterogeneity of the soil particles. Overall, our results
showed no impact of habitat type upon textural heterogeneity indicating that it is an
aspect of soil quality resistant to management decisions. Using a structural equation
modelling approach, we show that soil textural heterogeneity positively influences
bacterial diversity but had little impact upon fungal diversity. We also find that
textural composition impacts both bacterial and fungal composition, with many
specific microbial taxa showing co-occurrence relationships with clay and fine-silt
sized particles. Our results strongly indicate that soil textural heterogeneity influences
microbial community diversity regardless of soil management practices and
biophysical activities. The close linkages between different groups of soil organisms
can obscure the mechanisms driving the development of biodiversity, however, it is
clear that the soil physical environment has differential impacts on organisms with

different life history strategies.
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3.1 Introduction

The rich reservoir of microbial diversity within the soil performs many functions and
offers many resources, including controlling geochemical cycles, remediating
pollution, providing novel pharmaceutical products and more (Ling et al., 2015; van
der Heijden et al., 2008). There is often reference to the billions of soil microbes
within a gram of soil, yet the mechanisms leading to the establishment of such
diversity are still poorly understood (Bardgett & van der Putten, 2014). The
heterogeneity of soil particles and their structural arrangement has been suggested to
explain this diversity, as it leads both to an increased variety of environments for
organisms and isolates communities promoting differentiation (Or et al., 2007; Tecon
& Or, 2017; Vos et al., 2013; Zhou et al., 2002). Heterogeneity of soil structure can also
lead to spatial heterogeneity of nutrient availability and other physicochemical
properties which has been shown to lead to increased microbial diversity (Curd et al.,
2018). However, microbial communities also moderate the heterogeneity of their
surroundings, altering not only the chemical environment but also the physical
structure of the soil using hydrophobic films and aggregate formation (Totsche et al.,
2010). Soil heterogeneity both drives and is driven by microbial diversity and function

(Young & Crawford, 2004).

Structural heterogeneity of the soil environment leads to increased physical niche
space and spatial isolation which should increase microbial diversity (Wang & Or,
2012). Here we consider the physical niche space to be the dimensions within the
multidimensional ecological niche that are determined by the physical environment.
There is evidence that soil microbes do show preference for certain physical niches, as
microbial communities differentiate between different minerals (Nishiyama et al.,
2012) and particle size fractions (Gardner et al., 2012; Hemkemeyer et al., 2018; Poll et
al., 2003). These preferences could be due to the physical or chemical properties of
certain minerals, with microbes showing preference for minerals that provide certain
nutrients (Roberts, 2004). Also the surface area to volume ratio of mineral material
could influence microbial community assembly and activity, with links between
surface area ratio and bacterial communities being found in marine sediments (Wang

et al., 2015). Therefore, we should expect that as different particle size fractions are
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available, differing microbial assemblages should be present. This leads to the
expectation of a wider range of communities and increased overall diversity as there is
a wider range of particle size fractions available. Spatial isolation of communities can
lead to increased speciation and reduce competitive pressure leading to increased
overall diversity. In soil, spatial isolation of communities is based upon both the
texture of the soil and its water content; altering these properties to increase isolation
of bacterial communities has been shown to increase overall diversity (Carson et al.,
2010). The water content of the soil is also influenced by texture (Rawls et al., 2003),
with feedback effects on microbial communities and soil functions (Carson et al.,

2010; Rabot et al., 2018).

The impact of soil textural heterogeneity upon microbial activity and diversity is
moderated by the motility of those organisms within their environment. Bacterial
movement and communities are largely limited to water filled areas. Bacteria also have
limited capacity for directed movement, only capable of moving themselves very short
distances. However, larger organisms (e.g. earthworms, plant roots) can break up the
soil structure and move bacteria long distances, as can the mass flow of water (Yang &
van Elsas, 2018). Other organisms such as hydrophobic fungi are much less limited to
hydrated areas and can, in some cases, grow across vast distances relative to their size
(Ferguson et al., 2003; Tecon & Or, 2017). The ability of an organism to migrate
through the soil, and the interactions between different organisms, completely change

the impact of soil structure upon biological activity and diversity.

Here we investigated how soil textural heterogeneity altered across a variety of
temperate habitats and then assessed the impact of soil texture on bacterial and fungal
communities. We used laser granulometry to analyse soil texture, enabling detailed
characterisation of the soil particle size distribution. Due to the highly managed
aspect of the landscape, and the fact that textural class is more closely related to
parent material than aboveground community, we expected that the habitat type
would have minimal impact on soil texture class. We hypothesised that soil textural
heterogeneity would increase diversity of both bacteria and fungi, driven by
associations of different microbial taxa with certain particle size fractions. In

particular, we hypothesised that soil textural heterogeneity would positively impact
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bacterial and fungal richness after accounting for changes in pH and soil carbon,
which have been previously identified as strongly related to microbial diversity in UK
soils (Griffiths et al., 2011). We also hypothesised that shifts in diversity would be
driven by different microbial groups associating with different particle size fractions
and consequently, that microbial composition would be more affected by textural

composition than textural heterogeneity.

3.2 Methods

3.2.1 Sample collection

Soil samples were collected as part of the Glastir Monitoring and Evaluation
Programme from sites across Wales (Emmett & the GMEP team, 2017). Sites were
randomly selected from land use classes in proportion to their extent in order to be
representative of the variety of Welsh habitats (e.g., arable, improved and unimproved
grassland, broadleaved and coniferous woodland, heathland), and dominant soil types
(e.g., Cambisols, Podzols, Gleysols, Histosols, Lithosols, Rankers). In total, there were
127 individual 1 km squares with up to three sampling sites randomly located within
each square (Figure 3.1). The majority of these sites were grassland (132 improved
grassland, 89 neutral grassland and 37 acid grassland), with 14 arable sites, 22
broadleaved woodland, 18 coniferous woodland, 10 marshland and 13 other. Topsoil
samples (0-15 cm) were collected in summer 2013 and 2014 and analysed for multiple
soil properties including total organic carbon and pH. Soil pH was measured by
suspending 10 g of fresh field-moist soil in 25 ml of 0.01 M CaCly. After air-drying the
soil samples had particles greater than 2 mm size removed and the remaining fine
earth fraction ground by a deagglomerator (Pulverisette 8; Fritsch GmbH, Idar-
Oberstein, Germany). Total organic carbon of the ground fine earth fraction of the soil
was measured by oxidative combustion followed by thermal conductivity detection
using the Elementar Vario EL (Elementar UK Ltd., Stockport, UK). Methods were
consistent with the United Kingdom Countryside Survey; for a full description see

Emmett et al. (2008) and George et al. (2017).
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Figure 3.1. Map showing the location of the survey square locations used in this study.

3.2.2 Laser granulometry

Soil samples with less than 50% organic carbon were selected for analysis (n = 335).
Prior to analysis, each air-dried sample was subsampled by manual quartering and 0.5
g removed and treated with H20O> to remove organic carbon following the method of
Gee and Or (2002). Once the organic carbon had been removed, the samples were
transferred to 250 ml bottles, and 5 ml of 5% sodium hexametaphosphate (Calgon”)
added to promote particle dispersal and the samples were shaken overnight at 240 rev
min’l. The particle size distribution in each sample was then determined with a laser
diffraction LS320 particle size analyser (Beckman-Coulter Inc., Pasadena, CA). In brief,
this involved dispersal of the sample within a bath and subsequent passage of the
sample through a measurement cell. Within the analyser there is a change in detector
type at small particle sizes, as the higher ratio of particle dimension to light source
wavelength lowers the sensitivity of the method and makes it more difficult to obtain
accurate size values. To extend the lower size limit to 40 nm the patented Polarization

Intensity Differential Scattering (PIDS) technology was used to determine particle
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sizes below 1 pm. The outflow from the machine was also passed through a 63 pym
sieve and the collected sand-sized particles weighed. This allowed the sand content

measured by the laser to be verified.

To convert the machine measurements into a particle size distribution an optical
model must be used, and we chose to use the Mie theory approach (Bieganowski et al.,
2018). The choice of optical model is known to be highly influential on the results, and
improper model choice will make any further analysis meaningless (Keck & Miiller,
2008). Soil is a composite material, and its components have different refractive
indices which can make model specification challenging. Values of the optical model
reported in the literature vary considerably (Bieganowski et al., 2018), and many
papers do not mention which parameters they used. For our analysis we used an RI of
1.55 and an AC of 0.1, as in Ozer et al. (2010). This best reproduced the known particle

size fractions of internal laboratory soil standards representative of our soils.

3.2.3 Fractal analysis

The increasing use of laser granulometry to describe soil particle size distributions has
led to a need to find more descriptive measures of the shape of the particle size
distribution (Bieganowski et al., 2018). One increasingly popular method is the use of
fractal geometry to describe the heterogeneity of the soil particle size distribution
(Millan et al., 2003; Miranda et al., 2006; Rodriguez-Lado & Lado, 2017; Yu et al.,
2015). Tyler and Wheatcraft (1992) used a single fractal model to describe fractal
scaling of soil particle size, but found that many soils did not exhibit simple fractal
scaling. Instead of the simple power law of fractal scaling, soils can be analysed in
terms of multifractal scaling as first shown by Grout et al. (1998). Multifractal analysis
uses a spectrum of fractal dimensions to describe systems that have different fractal

properties at different scales or regions (Stanley & Meakin, 1988).

Within this paper multifractal analysis was undertaken according to the moment
method as described in Salat et al. (2017). The Rényi dimension Dgq for the parameter q

is defined according to equation 3.1.
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1 lo ,E
D, = lim 81q.€) 3.1
q—10 loge

Where ¢ is the size of the box and (g, €) is defined according to equation 3.2.

u(g, €) = pr 3.2

And p; is the proportion of mass in the ith box of size ¢.

A single fractal is characterized by the equality of the values of Dy, D; and D, (Posadas
et al., 2001). If Dq decreases strictly for increasing parameter g > 0, then the measure
is called multifractal (Peitgen et al., 1992). The various multifractal parameters give
different types of information about the distribution. Do is known as the box-counting
dimension and is equal to 1 when all subintervals are occupied at all scales and
declines with increasing empty subintervals. D; is known as the entropy dimension
and quantifies the degree of disorder present in the system — most heterogeneous
gives D; = 1, most homogenous gives D; = 0. D2 is known as the correlation dimension

as it computes the correlation of measures contained in size ¢ (Posadas et al., 2001).

3.2.4 Microbial community characterisation

Soils were homogenised by sieving with a sterilised 2 mm stainless steel sieve.
Sterilisation was achieved using high-level laboratory disinfectant and 5 min UV-
treatments on each side. DNA was extracted in triplicate using PowerLyzer PowerSoil
DNA Isolation Kits (MO-BIO) upon 0.25 g of soil per sample. Primers for the 16S
(prokaryotes) and ITSI (fungi) regions were used to create triplicate amplicon libraries
using a two-round PCR. Taxonomy was assigned through QIIME using the
GreenGenes database v. 13_8 and RDP methodology (Wang et al., 2007) for 16S data.
Taxonomy was assigned to the ITSI OTU table using the UNITE database v. 7.2 (Quast
et al., 2013). Singletons and OTUs appearing in only 1 sample were removed from OTU
tables. Archaeal, mitochondrial and chloroplast OTUs were removed from the 16S data
and non-fungi OTUs from the ITS data. For full details on the methodology used see
George et al. (2019). To account for differences in read depth across samples, the
bacterial and fungal OTU tables were rarefied to 18800 and 1500 reads respectively

(Oksanen et al., 2018; Weiss et al., 2017). Rarefaction was repeated 50 times for
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bacteria and 100 times for fungi and the rounded mean used for the calculation of

OTU richness which we use as our measure of alpha diversity.

3.2.5 Statistical analysis

All statistical analysis, including the calculation of multifractal parameters, were
performed in R version 3.5.0 (R Core Team, 2019). The sand, silt, clay percentages of
the samples were assigned to texture classes from the UK Soil Survey of England and
Wales and plotted on a ternary diagram using the soiltexture package in R (Moeys,
2015). Figure 3 was plotted using the ggplot2 package (Wickham, 2016). The impact of
habitat on the fractal parameters Do, D1, D2, Di/Do and D>/D; was tested using
ANOVAs, with significance assessed using the Bonferroni correction (i.e. p < 0.05/5

for significance).

A correlation network was created from Spearman’s rank correlation of the log-ratio
transformed particle size bins (i.e. size fractions), and plotted using the qgraph
package (Epskamp et al., 2012). Significant correlations were identified by the
asymptomatic t approximation, with the p value required for significance lowered
using a Bonferroni correction. The walktrap algorithm within the igraph package was
used to detect the presence of clusters within the network, limiting the network to

only significant positive links (Csardi & Nepusz, 2006).

We used structural equation modelling (SEM) to evaluate the relative influence of soil
texture on bacterial and fungal diversity. SEM was chosen due to its ability to evaluate
multiple processes at once and thus offer a more complete picture of the complex
network of processes affecting soil microbial ecology (Grace et al., 2010). A SEM
model was built using the lavaan package in R (Rosseel, 2012), and using the
lavaan.survey package to account for the spatial structure of the data by incorporating
square identity (Oberski, 2014). Land use intensity was encoded as a binary predictor,
with arable, improved grassland and neutral grassland being set to 1 (intensive land
use) and all other habitats being set to O (extensive land use). In total there were 310
samples with both texture and microbial data, with 221 samples being coded as

intense land use. Summary statistics for the data included in the SEM can be found in
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Supplementary Table S1. We assumed no direct effect of precipitation or elevation
upon bacterial or fungal diversity. Links that were pre-identified as being potentially
nonsignificant and also having a p-value greater than 0.2 were removed in a stepwise

manner until the best model according to AICc was found.

The correlation between the bacterial and fungal compositions and textural
composition was first evaluated by repeated calculation of the Procrustes statistic
using the protest function in the vegan R package. To examine if the particle size
impacted the microbial community, the particle size bins were aggregated into 9
categories (three per sand, silt and clay respectively) and these were fitted as vectors
to a non-metric dimensional scaling (NMDS) ordination in vegan. The common taxa
for bacteria and fungi were tested for co-occurrence relationships with specific particle
size bins by calculating the spearman rank correlations between the microbes and the
particle size bins and limiting to those that were significant with Bonferroni correction

(Harrell, 2017).

3.3 Results

3.3.1 Soil texture

Our samples showed considerable spread across soil texture categories (Figure 3.2),
consistent with the previously measured range of soil types across Wales (Proctor et
al., 1998). Many of our samples were classified as clay loam (n = 125) with silty clay
loam also constituting a significant proportion of the samples (n = 97). The next most
abundant categories were sandy loam and sandy silt loam with 36 and 38 samples

respectively. All other categories had fewer than 15 samples.
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Figure 3.2. Sand, silt and clay percentages of our samples plotted on a ternary diagram to show the range of

texture classes examined in this study. Sa, sand; Si, silt; Cl, clay; Lo, loam.

As expected, the amount of particles in a particular size category was strongly
positively correlated with the amount of particles in adjoining categories (Figure 3.3).
The very smallest size categories, of less than 0.1 pum, were strongly negatively
correlated with larger clay sized particles (0.16 to 2.2 pm). Two clusters of related
nodes within the network were detected with overall modularity 0.48: a fine silt and
coarse clay-sized particle cluster (0.13-13 um); and a sand, coarse silt and very fine

clay-sized particle cluster (0.04-0.13 pm and 15-2000 pm).
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Figure 3.3. Correlation network of soil particle size bins and multifractal parameters. Each circle is a node that
represents a variable measured, with lines between nodes representing the correlation between those
variables. Nodes are coloured according to identity: with a colour gradient of red for clay through yellow
for silt and blue for sand. Triangular nodes represent the summed proportions of clay, silt and sand.
Rectangular pink nodes represent the Dq values for q th