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Abstract
1.	 Agri-environment schemes (AES) provide an important mechanism for environ-

mental improvement with the potential to benefit many taxa, yet evidence of na-
tional scale benefits is mixed. Multiple sources of evidence are available to assess 
AES effects, with different strengths and weaknesses, but most existing studies 
use a single dataset to evaluate AES impacts.

2.	 We developed an approach analysing multiple datasets to assess relationships 
between AES and species abundance, richness and diversity, using the example 
of butterflies in England. We analysed data from a study specifically designed to 
assess AES effects (the LandSpAES study) alongside two different citizen science 
UK Butterfly Monitoring Scheme (UKBMS) surveys. UKBMS surveys were not 
designed to evaluate AES effects, but they provide better spatial coverage across 
the agricultural landscapes of England. We compared AES relationships between 
the three datasets, using a generalised AES gradient method to allow integra-
tion of different AES options, including the creation of habitat features such as 
wildflower strips and the restoration of semi-natural habitats. We assessed AES 
effects at both local (1 km) and landscape (3 km) scales.

3.	 We found that AES in the surrounding landscape was positively associated with 
butterfly community responses in all three datasets and some evidence that 
local-scale AES was positively associated with butterfly richness. The smaller 
size of the LandSpAES study led to wider confidence bounds around effect sizes, 
but the careful design provided assurance that potentially confounding effects 
were accounted for. The wider spatial coverage of the citizen science datasets 
increased confidence that results can be extrapolated to the national scale.

4.	 Synthesis and applications. Our results provide support for positive effects of AES 
on butterflies in England from multiple sources of evidence, providing confidence 
that these schemes are providing tangible benefits for butterflies. Our recommen-
dations for managers and policy makers are (1) multiple data sources should be 

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2025 Crown copyright and The Author(s). Journal of Applied Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society. This article is 
published with the permission of the Controller of HMSO and the King's Printer for Scotland.

www.wileyonlinelibrary.com/journal/jpe
mailto:
https://orcid.org/0000-0001-5382-5135
https://orcid.org/0000-0002-2022-7451
https://orcid.org/0000-0002-2233-3848
https://orcid.org/0000-0003-1133-3102
https://orcid.org/0000-0001-6467-3712
mailto:susjar@ceh.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1365-2664.70126&domain=pdf&date_stamp=2025-08-20


2  |    JARVIS et al.

1  |  INTRODUC TION

Agri-environment schemes (AES), whereby farmers are paid 
to implement management for environmental benefits, are im-
portant mechanisms for environmental policy delivery in the 
United Kingdom (UK) and Europe (Batáry et  al.,  2015; Stewart 
et al., 2022). As such, it is essential to understand the effective-
ness of these schemes. For options targeted towards biodiversity 
conservation, this includes assessment of the benefits of specific 
management on target taxa. However, there is also a need to un-
derstand the combined impacts of AES intervention across option 
types and landscapes to provide a national picture of AES effec-
tiveness (Staley et al., 2021). For mobile species, such as butter-
flies, it is likely that the amount and configuration of AES across 
the landscape are also important; therefore, we need to consider 
multiple spatial scales of AES impact.

Some butterfly species have been shown to have more posi-
tive population growth on specific sites under AES management 
compared to nearby non-AES areas (Redhead et  al.,  2022) or to 
regional population trends (Kolkman et  al.,  2022), but this has 
not been supported across a broader range of sites or species 
(Oliver, 2014). A recent review suggested most studies assessing 
community- or population-level responses of Lepidoptera to AES 
found positive effects (Bladon et  al.,  2023), but very few stud-
ies reviewed aimed to look for effects at national or other larger 
spatial extents, beyond the individual farm, study site or region. 
Despite relatively widespread uptake of AES in the UK, the na-
tional picture for farmland biodiversity remains one of decline, 
suggesting AES may not be delivering sufficient benefits at a 
national scale (Stewart et  al.,  2022). With the UK implementing 
new AES after withdrawal from the EU common agricultural pol-
icy (Department for Environment Food and Rural Affairs 2024), a 
solid evidence base to assess the performance of these schemes 
and enhance their design is needed.

There are several key challenges to overcome when attempting 
to assess AES impacts at national scales. These include the fact that 
AES impacts are often found to be context-specific (e.g. Scheper 
et  al.,  2015), such that replication across contexts is required to 
identify general patterns. The ideal data to test AES effects is often 
lacking (Josefsson et al., 2020; Kleijn & Sutherland, 2003), particu-
larly at large spatial scales. Ideally, data would be professionally col-
lected before and after AES implementation, at a large number of 
study sites, across a nationally representative range of AES uptake, 

across multiple landscapes and contexts, and over long time scales 
to assess population trends.

In England, the data available to assess AES impacts on butterflies 
come from either targeted studies specifically designed to detect 
AES effects and conducted at local or regional scales (e.g. Redhead 
et al., 2022; Staley et al., 2022) or by utilising existing national scale 
monitoring effort which is not designed specifically for AES impact 
detection (e.g. Oliver, 2014). Targeted studies are designed specif-
ically to look at AES effects and provide high-quality data where 
confounding variables are carefully controlled for. The cost of ob-
taining such data means sample sizes are low, and this comes at the 
expense of representativeness when the aim is to make inference at 
national scales. Citizen science data can provide large sample sizes, 
long time series and wide spatial coverage, but the lack of design 
to specifically test the impact of AES means it can be challenging 
to separate AES impacts from the effects of confounding variables 
(Oliver, 2014). Although the wide spatial coverage of citizen science 
data can increase representativeness, volunteer-led schemes are 
often biased towards more ecologically interesting areas and away 
from more typical farmland (Brereton et al., 2011; Ruck et al., 2024; 
Tulloch et al., 2013).

Choices about data used to evaluate AES effects are generally 
presented as mutually exclusive (i.e. to invest in a targeted survey or 
to exploit citizen science data) and most individual AES evaluation 
studies use a single data source (e.g. Boetzl et  al., 2021; Kolkman 
et  al.,  2022; Löffler et  al.,  2023; Meier et  al.,  2024; Oliver,  2014; 
Panassiti et al., 2023; Redhead et al., 2022). Given the difficulties in 
identifying an ideal dataset to evaluate AES effects, we consider that 
bringing together multiple datasets to answer the same question al-
lows us to benefit from the different strengths of separate datasets. 
If consistent positive effects across multiple datasets are found, 
then this provides good evidence that AES are providing benefits 
to butterflies and that these effects can be seen at national scales. 
To enable multiple datasets to be analysed to consider AES effects 
on butterflies in England, we designed a common analytical frame-
work which could be applied to data from both a targeted study (the 
LandSpAES study) and two citizen science surveys in England.

The LandSpAES study was designed to provide high-quality, tar-
geted evidence of the impact of landscape-scale AES intervention on 
mobile species, including butterflies (Staley et al., 2022). LandSpAES 
is a pseudo-experimental study (i.e. AES were not randomly allo-
cated; Christie et al., 2019) which uses a carefully constructed design 
to allow the effects of local (within a 1 km × 1 km areas) and landscape 

considered for AES monitoring and evaluation, exploiting the strengths of differ-
ent data types; (2) AES intervention over larger spatial areas than individual fields 
and farms should be considered when aiming to provide benefits for butterflies.

K E Y W O R D S
abundance, agri-environment, butterfly, citizen science, data synthesis, landscape scale, 
survey design
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    |  3JARVIS et al.

(the surrounding 3 km by 3 km area) scale AES to be separated. The 
design reduces the potential for confounding landscape variation 
to obscure AES effects by replication across six regions with con-
trasting landscape characteristics (Staley et al., 2022). However, the 
high cost of the survey means a limited number of survey locations 
are monitored that are not representative of conditions across all of 
England.

Data on butterflies from across England are also available 
from the long-running UK Butterfly Monitoring Scheme (UKBMS), 
one of the UK's largest structured citizen science schemes. This 
scheme supports volunteers to survey transect routes for butter-
flies on a repeated basis and data from this scheme inform trends 
in butterfly populations across the UK. The UKBMS includes 
a number of different component surveys including the Wider 
Countryside Butterfly Survey (WCBS), which was designed to in-
crease understanding of trends in butterflies outside of the high-
quality habitats volunteers tend to prefer (Brereton et al., 2011). 
These citizen science surveys provide a potentially useful re-
source to understand AES effects as they provide a large volume 
of data and cover a broad range of English agricultural landscapes. 
However, the lack of an AES-focused design means the potential 
for confounding effects is much higher.

We assessed AES impacts on butterflies in England from the 
LandSpAES, UKBMS and WCBS datasets. Our key questions were 
as follows:

1.	 Are similar relationships between butterfly community responses 
(abundance, diversity and richness) and AES implementation 
observed in all three datasets when analysed under a common 
framework?

2.	 Do relationships vary with the spatial scale of AES considered (a 
1 km ‘local’ area vs. a 3 km ‘landscape’ area)?

3.	 Is there evidence of an overall positive impact of AES on 
butterflies?

2  |  MATERIAL S AND METHODS

2.1  |  Datasets

2.1.1  |  LandSpAES data

The LandSpAES project ran from 2017 to 2022 and assessed whether 
key mobile taxa were affected by the quantity of AES management, 
measured at local and landscape scales, specifically considering im-
pacts beyond option, farm or AES agreement boundaries, and across 
multiple taxa. To enable this, a novel AES gradient approach was de-
veloped (Staley et al., 2021, 2022) using information on the spatial 
extent, expected benefit per species group and payments for each 
option to derive a continuous AES score. The AES gradient score 
methodology (described in detail below) allows landscapes with dif-
ferent characteristics and expected biodiversity impacts to be com-
pared in terms of AES intervention on a common scale. For example, 

it allows an upland landscape with a small number of spatially exten-
sive options such as reduced stocking and a lowland landscape with 
small areas of resource-rich options such as flower-rich margins to 
be placed on the same scale.

Fifty-four 1 km squares were selected to maximise the contrast 
between AES gradient scores in the local (1 × 1 km) area and in the 
wider landscape (surrounding 3 × 3 km) to enable separation of AES 
effects at different spatial scales. The selection process (described 
in detail in Staley et al., 2021) used a weighted random methodol-
ogy to select squares from all factorial combinations of low, medium 
and high AES gradient scores at local and landscape scales (i.e. nine 
squares, see Figure S1) within each of six regions with homogenous 
background landscape characteristics (National Character Areas, 
hereafter NCAs), giving 54 cells in total. These NCAs included both 
upland and lowland landscapes (Figure 1) and were chosen to repre-
sent a diversity of farmed landscapes across England. The design en-
ables the interaction between local- and landscape-scale AES to be 
assessed, to investigate whether butterflies respond more positively 
to local AES in landscapes with less AES implementation.

Six mobile taxon groups were monitored within survey squares 
(butterflies, bees, moths, hoverflies, birds and bats) annually be-
tween 2017 and 2021 (excluding 2020 when field survey was not 
possible due to the COVID-19 pandemic; Staley et al., 2022). Here 
we focus on butterflies, which were recorded to species along fixed 
transect routes within a 5 × 5 × 5 m hypothetical box, known as a 
‘Pollard walk’. Key characteristics of the butterfly surveys conducted 
within LandSpAES are shown in Table 1.

F I G U R E  1  Map of survey locations in England used in this study 
belonging to three datasets: the UK Butterfly Monitoring Scheme 
(UKBMS); Wider Countryside Butterfly Monitoring Scheme 
(WCBS); LandSpAES study. Shaded grey areas show the National 
Character Areas in which LandSpAES sites are situated (Yorkshire 
Dales, The Fens, Dunsmore and Feldon, South Suffolk and North 
Essex Clayland, High Weald, Dartmoor). Citizen science transects 
outside of farmed landscapes were not included in the analysis and 
are not shown on the map.
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4  |    JARVIS et al.

2.1.2  |  UKBMS and WCBS survey data

The UKBMS is a citizen science scheme monitoring populations of 
butterflies across the UK since 1976, using several types of survey. 
The original and most widely adopted survey type is a standard 
transect walk (hereafter termed ‘UKBMS’) where a fixed-line route 
is established by the recorder and walked weekly from the start of 
April to the end of September annually (Pollard & Yates,  1993). 
These transects vary greatly in length and are more typically lo-
cated, historically at least, in areas of good quality semi-natural 
habitats. In 2007, the WCBS was developed to produce unbiased 
abundance indices and trends for wider countryside species, 
through more representational coverage of habitats (such as farm-
land) that dominate much of the UK but were historically under-
represented in UKBMS sites (Brereton et  al.,  2011). WCBS sites 
are randomly selected 1 km squares within which butterflies are 
recorded on two parallel 1 km transects. WCBS transects are vis-
ited at least twice per year, primarily in July and August. WCBS 
and LandSpAES transects are both designed to sample a 1 km 
square, whereas UKBMS transects can extend across multiple 
1 km squares. We assigned a 1 km grid reference to UKBMS tran-
sects for analysis using the transect mid-point grid reference. Key 
dataset properties are summarised in Table 1.

The distributions of UKBMS and WCBS sites in 2017–2019 and 
2021 are shown in Figure  1, showing a much greater coverage of 
England compared to LandSpAES sites. We excluded any UKBMS 
and WCBS sites that were not predominantly farmland using crite-
ria previously applied during LandSpAES square selection (>30% 
of combined urban, suburban and freshwater coverage or >50% 

combined broadleaved and coniferous woodland coverage; Staley 
et al., 2016; Rowland et al., 2017).

2.2  |  Calculation of response variables

Total butterfly abundance, species richness and Shannon diversity 
index were calculated for each transect in each dataset in each year, 
aggregating across all visits between May and August. We excluded 
visits outside this window, which covers the LandSpAES survey pe-
riod. Our analysis assesses the effect of AES on the butterfly com-
munity observed across the year and thereby includes potential 
AES effects on turnover throughout the year. Summaries of each 
response variable for each dataset are shown in Table S1.

Most butterflies were recorded to species in all three datasets; 
however, in a few cases, aggregates were used for species which were 
particularly difficult to identify in the field. It was usually possible to 
allocate aggregates to species level based on the proportions of the 
two constituent species observed in each square, as recommended in 
the UKBMS field guidance (UKBMS 2024). Where this was not possi-
ble, the aggregate taxon was used across datasets for consistent tax-
onomic resolution. A list of species recorded is provided in Table S2.

2.3  |  Survey effort

Key differences between the datasets include the total transect length 
and the number of repeat visits per year. Failing to account for these 
differences in survey effort could obscure variation due to AES. We 

Feature LandSpAES UKBMS WCBS

Number 
of unique 
survey sites

54 1207 730

Design 
rationale

Designed to detect 
relationships between 
mobile taxa and AES 
gradients at local and 
landscape scales in six 
regions

Designed to assess 
abundance change over 
time in UK butterfly 
populations

Designed to 
assess abundance 
change over time 
in UK butterfly 
populations with 
a focus on wider 
countryside species

Survey 
method

Pollard walk Pollard walk Pollard walk

Transect 
length

2 km Variable (50 m to 12 km) 2 km

Transect 
placement

Representative of a 1 km 
square

Surveyor choice Representative of a 
1 km square

Repeat visits 
between 
May and 
August

3–4 (median = 4) 1–66 (median = 16) 1–10 (median = 2)

Years of data 
per square 
(2017–2019 
plus 2021)

3–4 1–4 1–4

TA B L E  1  Key characteristics of data 
sources included in the analyses.
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    |  5JARVIS et al.

calculated the number of unique visits between May and August (re-
gardless of whether any butterflies were seen) for all datasets, and tran-
sect length for UKBMS transects, to include as covariates in analyses.

2.4  |  AES gradient calculation

We calculated AES gradients using the approach described in Staley 
et al. (2016) with updated AES uptake data. As described above, this 
approach uses the spatial extent of options, expected benefit per 
species group derived from an evidence review and payments (some-
times provided as points) for each option to derive a continuous AES 
score for a 1 km unit. Option extents were derived from AES uptake 
data for Environmental Stewardship and Countryside Stewardship, 
accessed from the Natural England Open Data Geoportal (https://​
natur​aleng​land-​defra.​opend​ata.​arcgis.​com/​). These include all types 
of AES option present from 2017 to 2021, including legacy Entry 
and Higher Level Stewardship, and Countryside Stewardship options 
from 2016 onwards, made spatially explicit at the level of the field 
centroid where the AES option was located. The benefit score was 
obtained by scoring each option for benefit to multiple mobile taxon 
groups as a function of the strength and quality of available evidence 
(Staley et al., 2016, 2021). Scheme points or payment rates per unit 
option were derived from the relevant AES handbooks (Table S3).

All three elements were multiplied for each option type and then 
summed across all options present to give a single AES gradient score 
per year for each 1 km square in the three butterfly datasets. The AES 
gradient score has arbitrary units and ranges from 0 (no AES present) 
to over 40,000 (multiple beneficial options widely present). The 3 km 
gradient scores were then derived by taking the mean score of the 
surrounding eight cells for each 1 km square. The AES gradient scores 
were calculated identically for all three datasets providing a consistent 
measure of AES that is specifically designed to be relevant for mobile 
taxa including butterflies. Across England, the AES options included in 
the gradients included the creation of resource-rich habitat features 
such as wildflower strips, the restoration of semi-natural habitats such 
as species-rich grassland, and the adoption of less intensive manage-
ment activities (e.g. reduced stocking density or reduced fertiliser 
application). A full list of AES option types included in the gradient cal-
culations is provided in Table S3.

AES uptake data have some limitations in the accuracy and 
precision with which AES options are recorded, but comparison 
against AES gradients measured from field data obtained during the 
LandSpAES project showed good correspondence (average correla-
tion of 0.78; Staley et al., 2021).

2.5  |  Environmental covariates

To account for potentially confounding factors, we constructed three 
variables representing broad gradients of climate, landscape and habi-
tat across England. We calculated these variables from three separate 
principal components analyses (PCAs), each containing 6–8 variables 

at 1 km resolution selected to be likely influences on butterfly popula-
tions. Details and sources of environmental covariate data are given 
in Table S4. From each PCA, we then extracted the first axis score for 
each transect location as a new variable to include in our models of 
butterfly responses. We chose PCA as a pragmatic method of distilling 
the large number of potentially important variables into a small num-
ber that could be included in any dataset model (Graham, 2003). PCA 
axes had no or weak correlations with AES scores (Table S5).

2.6  |  Statistical analysis

A unified model structure was derived which could be applied to 
each butterfly response and dataset to enable a fair comparison of 
results. There were six key model components:

1.	 The response variable, which was either butterfly species 
richness, diversity or abundance, is described above. Richness 
responses were modelled as Poisson, abundance as nega-
tive binomial and diversity as Gaussian with an exponential 
transformation.

2.	 The AES gradient terms for local, landscape and an interaction 
between local and landscape gradients.

3.	 Terms for survey effort. In all models a term was included for the 
number of visits between May and August, and in UKBMS mod-
els, a term was included for transect length.

4.	 The three PCA gradients representing key variation in climate, 
landscape and habitat.

5.	 A term for survey year.
6.	 A random term for survey square identity, to account for repeated 

visits to the same 1 km square. Preliminary analysis investigated 
whether temporal autocorrelation could be estimated, but this 
was not possible due to the small number of years and missing 
data from 2020.

Linear or generalised linear mixed effect models were run 
using brms package v2.18.0 (Bürkner, 2017) as an interface to Stan 
(Carpenter et al., 2017; rstan v2.26.13). All models were fitted using 
four chains and 2000 iterations, of which 1000 were warm-up, 
and examined for convergence using the R-hat statistic (Vehtari 
et al., 2021), effective sample size and graphical checks. Recovery of 
the data was examined using graphical posterior retrodictive checks 
(Gabry et al., 2019).

To test whether coefficients from the AES terms were simi-
lar between individual dataset models (e.g. whether the 1 km AES 
effect estimated for LandSpAES was the same as the 1 km AES 
effect estimated for UKBMS), we calculated pairwise differences 
between 1000 draws from the posterior distributions of the pa-
rameters. If the 95% highest posterior density interval (HPDI) 
overlapped zero, then we concluded that the two coefficients 
were similar. All code to run the models is available at https://​
github.​com/​NERC-​CEH/​AES-​multi​ple-​evide​nce-​paper​. This study 
did not require ethical approval.
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3  |  RESULTS

AES had a significant positive relationship with butterfly commu-
nity variables, particularly at the landscape (3 km) scale (Figure 2; 
Table  2). We found evidence that the landscape gradient was 
positively associated with butterfly community responses in all 
three datasets, although there was variability between responses 
and datasets in the strength of evidence. Relationships between 

landscape AES intervention and butterfly abundance were most 
strongly supported by LandSpAES and WCBS, but positive re-
lationships with richness were more evident in the analysis of 
UKBMS and WCBS. A positive relationship with diversity was only 
found for WCBS.

Mixed evidence was found for effects of the local (1 km) AES gra-
dient, which had a positive effect on richness in both UKBMS and 
WCBS analyses, but a negative relationship with butterfly diversity 

F I G U R E  2  Predicted relationships between local (1 km) and landscape (3 km) AES gradients and total butterfly community abundance, 
diversity and richness for each of the three butterfly datasets considered (UKBMS, UK Butterfly Monitoring Scheme; WCBS, Wider 
Countryside Butterfly Survey; LandSpAES study). Shannon diversity is exponentially transformed.
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    |  7JARVIS et al.

in the UKBMS analysis. There was no evidence that local AES posi-
tively impacted butterfly abundance in any dataset.

Interaction effects, where the effect of local AES is mediated by 
the level of AES in the surrounding landscape, were only found in 
analyses of WCBS data. These analyses suggested that the effect of 
local AES on both butterfly richness and abundance was highest in 
low AES landscapes (Table 2). In all cases, credible intervals around 
the estimated effects were widest for models using LandSpAES 
data, reflecting the smaller sample size available. LandSpAES also 
had less coverage of very high landscape AES scores, due to a small 
number of very highly scoring UKBMS and WCBS squares, with the 
vast majority of 1 km squares having landscape AES scores of less 
than 20,000 (Figure S2).

Despite some differences in significance, the overall similar-
ity of responses between datasets is demonstrated by the HPDI 
tests which showed no significant differences between most data-
sets (Table 3). The one case where the HPDI test showed that the 
datasets did not agree was between LandSpAES and UKBMS for 
landscape-scale AES effects on butterfly abundance. LandSpAES 
showed a strong positive relationship between butterfly abundance 
and the landscape AES gradient, whilst UKBMS data showed no sig-
nificant relationship (Figure 2; Table 2). There was a slight trend to-
wards greater differences between UKBMS and the other datasets, 

although in all cases responses using UKBMS and WCBS data were 
not statistically different from each other. A version of Figure  2 
showing data points is provided in Figure S3.

4  |  DISCUSSION

Our results demonstrate that combining multiple data sources 
provided a broad consensus on relationships between AES and 
butterfly community responses. The results showed high similar-
ity between the estimated relationships when compared pairwise 
between the data sources and, in several cases, the observed re-
lationships were very similar across all three datasets, for example 
the positive relationship between landscape AES and butterfly 
richness.

4.1  |  AES effects on butterflies

We found more evidence of landscape-scale (3 × 3 km) AES effects 
on butterflies than effects of local AES (within a 1 km square). This 
would suggest that the mobility of butterflies, and their relatively 
high ability to disperse and exploit the floral resources and larval 

Local AES (1 km)
Landscape AES 
(3 × 3 km)

Local × landscape 
AES interaction

Abundance LandSpAES 0.005 (0.070) 0.212 (0.095) 0.030 (0.072)

UKBMS 0.020 (0.013) 0.017 (0.030) 0.001 (0.009)

WCBS 0.045 (0.024) 0.103 (0.038) −0.213 (0.011)

Diversity LandSpAES 0.231 (0.220) 0.223 (0.317) −0.233 (0.218)

UKBMS −0.117 (0.042) 0.130 (0.093) −0.003 (0.03)

WCBS −0.057 (0.063) 0.193 (0.098) −0.022 (0.028)

Richness LandSpAES 0.012 (0.028) 0.045 (0.035) −0.005 (0.032)

UKBMS 0.013 (0.004) 0.029 (0.011) −0.006 (0.003)

WCBS 0.026 (0.011) 0.055 (0.016) −0.013 (0.005)

Note: Bold indicates significant effects where the 95% credible interval does not include zero.

TA B L E  2  Results of models of butterfly 
abundance, diversity and richness against 
AES local, landscape and interaction 
effects. Mean covariate estimates are 
shown alongside standard errors in 
brackets.

Response Dataset 1 Dataset 2 AES 1 km AES 3 km Interaction

Abundance LandSpAES WCBS −0.183–0.108 −0.097–0.306 −0.098–0.186

LandSpAES UKBMS −0.162–0.119 0.007–0.397 −0.115–0.169

WCBS UKBMS −0.078–0.030 −0.179–0.010 −0.005–0.050

Diversity LandSpAES WCBS −0.140–0.751 −0.568–0.703 −0.637–0.210

LandSpAES UKBMS −0.096–0.774 −0.581–0.726 −0.652–0.196

WCBS UKBMS −0.211–0.092 −0.321–0.200 −0.059–0.103

Richness LandSpAES WCBS −0.076–0.046 −0.082–0.068 −0.052–0.075

LandSpAES UKBMS −0.058–0.056 −0.057–0.086 −0.063–0.063

WCBS UKBMS −0.036–0.010 −0.063–0.013 −0.004–0.019

Note: Bold indicates that the HPDI does not overlap zero, indicating a significant difference in 
slopes.

TA B L E  3  95% highest posterior density 
intervals (HPDIs) for each combination of 
models and covariates.
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foodplants provided by AES options, means that they are respond-
ing to AES at a landscape scale. Larkin and Stanley  (2021) found 
that landscape-level farming intensity, defined by the amount of 
improved versus semi-natural grassland within a 2 km radius, had a 
stronger influence on butterfly community composition than a field-
scale proxy for AES, but did not find effects on butterfly richness, 
diversity or abundance. This difference could be due to their use of 
a proxy for AES at the local scale, and a measure of farming intensity 
at the landscape scale that is not necessarily related to AES interven-
tions (Larkin & Stanley, 2021). Stronger responses to landscape-level 
AES might also be expected given the higher mobility of the butterfly 
species in our study, which were dominated by mobile, wider coun-
tryside species. In addition, the use of a consistent method to calcu-
late AES intervention at two spatial scales may have allowed better 
spatial attribution of relationships between AES and butterflies, 
compared to previous studies (e.g. Panassiti et al., 2023). However, 
we found the positive effect of landscape AES on abundance was not 
observed in the UKBMS dataset. UKBMS includes more high-quality 
semi-natural sites (Roy et al., 2015) with nationally scarce, but po-
tentially locally highly abundant, habitat specialist species such as 
the Chalk Hill Blue (Polyommatus coridon). Although these species 
may respond to targeted AES (e.g. Brereton et al., 2008), they may 
show weaker relationships with the generalised AES gradients used 
here, particularly if the transect habitat is already of high quality.

Although interaction effects were not supported in most mod-
els, we did find some evidence from the WCBS survey that the 
effect of local AES was highest in low AES landscapes. This might 
indicate that resources provided by AES are more important for 
butterfly populations when the landscape is impoverished in AES 
options (Scheper et al., 2015). A similar effect of organic farming on 
butterflies has been observed, whereby the benefits are greater in 
conventional landscapes (Rundlöf et al., 2008). Whether this is an 
attraction effect (e.g. reflecting species movement to high resource 
areas) or a population effect relies on future assessment of change 
over time, although there is evidence that AES uptake at landscape 
scales equivalent to those used here is correlated with more positive 
long-term population trends (Redhead et al., 2022).

We found only one negative relationship, between UKBMS 
measured diversity and the local AES gradient. Because UKBMS 
is biased towards semi-natural sites where rare and specialist spe-
cies are likely to be present, this may inflate diversity in landscapes 
which are managed in ways other than those supported by AES 
(e.g. specialist management of nature reserves). Alternatively, the 
finding could reflect AES supporting proportionally higher abun-
dances of more common, generalist species (Aviron et al., 2011; 
Batáry et  al.,  2015), leading to a small decrease in observed 
diversity.

4.2  |  Dataset comparison

As recognised by other authors, there are significant challenges 
in designing studies to assess AES effects (Redhead et  al.,  2022, 

Josefsson et al., 2020). Individually, many datasets will fail to over-
come at least some of these challenges (e.g. lacking an AES-focused 
design, lacking data prior to AES implementation, lacking accurate 
AES intervention data). Using multiple data sets with different 
strengths and weaknesses is one way of tackling these shortcom-
ings. Identifying similar patterns across multiple datasets provides 
confidence that observed patterns are both real (i.e. not influenced 
by confounding factors) and representative (i.e. effects can be ex-
trapolated beyond small, focused, study areas).

By analysing multiple datasets using a common analytical ap-
proach, we were able to make direct comparisons between coeffi-
cients estimated using each dataset. By ensuring that we defined 
community responses, AES gradients and model structures in com-
parable ways, we can conclude that differences between analyses 
are likely to be due to the design and properties of each dataset. 
For example, we found that relationships in LandSpAES data were 
much more uncertain (i.e. had wider confidence bounds) than re-
lationships observed using the citizen science datasets due to the 
smaller size and likely lower power of the LandSpAES data (Jennions 
& Møller,  2003). However, the targeted design of the LandSpAES 
study, which was designed to accurately attribute AES effects, pro-
vides high confidence that relationships are not influenced by con-
founding variables.

Citizen science data is a useful source of information for un-
derstanding national scale impacts of drivers such as AES due to 
the large volume of data available and wide spatial coverage. The 
challenge for analyses of this data is in accounting for confounding 
factors and potential biases, which if not fully accounted for could 
lead to incorrect inference about the impacts of AES (Johnston 
et al., 2023; Ruck et al., 2024). Our analytical framework included 
some of these potentially confounding variables in the models via 
the PCA approach, and comparison with LandSpAES data provided 
confidence that most confounding variables were accounted for. We 
did not account for the known bias of UKBMS towards good quality 
sites in our models, partially explaining why UKBMS results were 
the most divergent. In addition, UKBMS transects are not restricted 
to 1 km squares (Table 1), resulting in lower confidence in the spatial 
attribution of the AES gradient scores and the environmental covari-
ates for UKBMS butterfly data.

4.3  |  Caveats and limitations

Few AES studies are designed in an optimal way, using a before–
after comparison, because monitoring usually starts after the AES 
scheme (Christie et al., 2019; Josefsson et al., 2020). Our study does 
not include a before–after comparison and cannot rule out higher 
AES uptake in higher quality areas influencing our results. Repeated 
monitoring after a scheme has started can help to identify whether 
AES impacts population trends, for example whether AES amelio-
rates declines in the wider landscape (Redhead et  al.,  2022; Roth 
et al., 2008). Citizen science provides an ongoing source of monitor-
ing effort (e.g. Oliver, 2014), but researchers lack control over when 
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and where revisits are conducted. Ideally, citizen science data would 
be used alongside longer-term surveys designed to look for effects 
of AES over time.

Our AES gradient approach incorporates AES across multiple 
types of farmland systems and landscapes and provides insight into 
whether AES as a whole are providing benefits to butterflies. The 
generalised nature of this gradient approach also means it could be 
adapted to AES contexts in other countries, instead of using total 
option area as a metric of landscape AES (e.g. Meier et  al.,  2024; 
Zingg et al., 2019). However, the generalised approach means it is 
more difficult to link specific options to benefits to butterflies across 
diverse landscape types. For example, high butterfly abundance in 
lowland arable landscapes may be linked to a high density of sown 
flower margins, whereas in upland landscapes such as the Yorkshire 
Dales, high butterfly abundance may be more influenced by land-
scape diversity, habitat heterogeneity and low impact management 
(Löffler et al., 2023).

An important caveat to our approach is that it uses data from 
citizen science schemes that are broadly comparable to designed 
studies. Butterflies have well-designed national-scale structured 
monitoring in England, and the LandSpAES protocols were spe-
cifically designed to enable comparability (Jarvis et al., 2021). The 
approach is likely to be most successful for other taxa which have 
structured citizen science schemes; where only opportunistic citizen 
science data is available, more complex methods of comparing and 
integrating data would be required (Johnston et al., 2023).

5  |  CONCLUSIONS AND 
RECOMMENDATIONS

We found good support for a positive impact of landscape-level AES 
intervention on butterflies across a targeted survey designed to assess 
AES effects and national-scale citizen science datasets. This indicates 
that the positive relationships with butterfly abundance and richness 
hold across multiple conditions, and we can assume they are repre-
sentative nationally. These results suggest that AES has a potentially 
significant role in supporting butterfly abundance across lowland and 
upland landscapes in England. The finding that butterflies appear to 
respond more strongly at the landscape scale suggests that manag-
ers and policy makers should consider supporting AES intervention 
across spatial areas beyond those of individual fields and farms to 
create landscapes of high AES uptake. This could be implemented by 
encouraging or incentivising clusters of neighbouring farmers to take 
up beneficial options (Meier et  al.,  2024). Current AES schemes in 
England include both the Sustainable Farming Incentive, which aims 
to incentivise very widespread uptake of easily applied AES options, 
and Landscape Recovery, which aims to support multiple landowners 
across a landscape to implement more targeted environmental im-
provement actions. Creation of landscapes of beneficial options under 
both schemes could be positive for butterflies.

To quantify the impacts of AES requires efficient monitoring and 
evaluation. Here we showed the benefit of using both targeted and 

citizen science monitoring to understand AES impacts at national 
scales and would recommend future monitoring and evaluation con-
sider both forms of evidence. We suggest building points of com-
monality into new surveys for easier comparability with existing 
datasets, for example using a 1 km cell basis and using standardised 
protocols. Understanding the impact of AES at national scales will 
benefit from exploiting multiple datasets, ensuring that we make the 
most of the data available.
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